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Multiscale finite element methods for linear
problems and overview

2.1 Summary

In this section, the main concept of multiscale finite element methods (Ms-
FEM) is presented. We keep the presentation simple to make it accessible to
a broader audience. Two main ingredients of MsFEMs are the global formula-
tion of the method and the construction of basis functions. We discuss global
formulations using various finite element, finite volume, and mixed finite ele-
ment methods. As for multiscale basis functions, the subgrid capturing errors
are discussed. We present simplified computations of basis functions for cases
with scale separation. We also discuss the improvement of subgrid capturing
errors via oversampling techniques. Finally, we present some representative
numerical examples and discuss the computational cost of MsFEMs. Analysis
of some representative cases is presented in Chapter 6.

2.2 Introduction to multiscale finite element methods

We start our discussion with the MsFEM for linear elliptic equations

Lp = f in Ω, (2.1)

where Ω is a domain in R
d (d = 2, 3), Lp := −div(k(x)∇p), and k(x) is a

heterogeneous field varying over multiple scales. We note that MsFEM can be
easily extended to systems such as elasticity equations, as well as to nonlinear
problems (see Section 2.4 and Chapter 3). The choice of the notations k(x)
and p(x) in (2.1) is used because of the applications of the method to porous
media flows later in the book. We note that the tensor k(x) = (kij(x)) is
assumed to be symmetric and satisfies α|ξ|2 ≤ kijξiξj ≤ β|ξ|2, for all ξ ∈ R

d

and with 0 < α < β. We omit x dependence when there is no ambiguity and
assume the summation over repeated indices (Einstein summation convention)
unless otherwise stated.
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14 2 MsFEMs for linear problems and overview

MsFEMs consist of two major ingredients: multiscale basis functions and
a global numerical formulation that couples these multiscale basis functions.
Basis functions are designed to capture the multiscale features of the solu-
tion. Important multiscale features of the solution are incorporated into these
localized basis functions which contain information about the scales that are
smaller (as well as larger) than the local numerical scale defined by the basis
functions. A global formulation couples these basis functions to provide an
accurate approximation of the solution. Next, we discuss some basic choices
for multiscale basis functions and global formulations.

Basis functions. First, we discuss the basis function construction. Let Th

be a usual partition of Ω into finite elements (triangles, quadrilaterals, and
so on). We call this partition the coarse grid and assume that the coarse grid
can be resolved via a finer resolution called the fine grid. For clarity of this
exposition, we plot rectangular coarse and fine grids in Figure 2.1 (left figure).
Let xi be the interior nodes of the mesh Th and φ0

i be the nodal basis of the
standard finite element space Wh = span{φ0

i }. For simplicity, one can assume
that Wh consists of piecewise linear functions if Th is a triangular partition.
Denote by Si = supp(φ0

i ) (the support of φ0
i ) and define φi with support in

Si as follows

Lφi = 0 in K, φi = φ0
i on ∂K, ∀K ∈ Th, K ⊂ Si; (2.2)

that is multiscale basis functions coincide with standard finite element basis
functions on the boundaries of a coarse-grid block K, and are oscillatory in
the interior of each coarse-grid block. Throughout, K denotes a coarse-grid
block. Note that even though the choice of φ0

i can be quite arbitrary, our
main assumption is that the basis functions satisfy the leading-order homo-
geneous equations when the right-hand side f is a smooth function (e.g., L2

integrable). We would like to remark that MsFEM formulation allows one
to take advantage of scale separation which is discussed later in the book.
In particular, K can be chosen to be a domain smaller than the coarse grid
as illustrated in Figure 2.1 (right figure) if the small region can be used to
represent the heterogeneities within the coarse-grid block. In this case, the
basis function has the formulation (2.2), except K is replaced by a smaller
region, Kloc, L(φi) = 0 in Kloc, φi = φ0

i on ∂Kloc, where the values of φ0
i

inside K are used in imposing boundary conditions on ∂Kloc. In general, one
solves (2.2) on the fine grid to compute basis functions. In some cases, the
computations of basis functions can be performed analytically. To illustrate
the basis functions, we depict them in Figure 2.2. On the left, the basis func-
tion is constructed when K is a coarse partition element, and on the right,
the basis function is constructed by taking K to be an element smaller than
the coarse-grid block size. Note that a bilinear function in Figure 2.2 (right
figure) is used to demonstrate boundary conditions on a small computational
domain and this bilinear function is not a part of the basis function. In this
case, the assembly of the stiffness matrix uses only the information in small
computational regions and the basis function can be “periodically” extended
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Fig. 2.1. Schematic description of a coarse grid.
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Fig. 2.2. Example of basis functions. Left: basis function with K being a coarse
element. Right: basis function with K being RVE (bilinear function demonstrates
only the boundary conditions on RVE and is not a part of the basis function).

to the coarse-grid block, if needed (see later discussions and Section 2.6).
Computational regions smaller than the coarse-grid block are used if one can
use smaller regions to characterize the local heterogeneities within the coarse
grid block (e.g., periodic heterogeneities). We call such regions Representa-
tive Volume Element (RVE) following standard practice in engineering. More
precisely, we assume that the size of the RVE is much larger than the char-
acteristic length scale. In this case, one can use the solution in RVE with
prescribed boundary conditions to represent the solution in the coarse block
as is done in homogenization (e.g., [43, 164]). Later, we briefly discuss an
extension of the method to problems with singular right-hand sides. In this
case, it is necessary to include basis functions with singular right-hand sides.
Once the basis functions are constructed, we denote by Ph the finite element
space spanned by φi

Ph = span{φi}.
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Global formulation. Next, we discuss the global formulation of MsFEM.
The representation of the fine-scale solution via multiscale basis functions
allows reducing the dimension of the computation. When the approximation
of the solution ph =

∑
i piφi(x) (pi are the approximate values of the solution

at coarse-grid nodal points) is substituted into the fine-scale equation, the
resulting system is projected onto the coarse-dimensional space to find pi. This
can be done by multiplying the resulting fine-scale equation with coarse-scale
test functions. Other approaches can be taken for general nonlinear problems.
In the case of Galerkin finite element methods, when the basis functions are
conforming (Ph ⊂ H1

0 (Ω)), the MsFEM is to find ph ∈ Ph such that

∑

K

∫

K

k∇ph · ∇vhdx =
∫

Ω

fvhdx, ∀ vh ∈ Ph. (2.3)

One can choose the test functions from Wh (instead of Ph) and arrive at the
Petrov–Galerkin version of the MsFEM as introduced in [143]. Find ph ∈ Ph

such that
∑

K

∫

K

k∇ph · ∇vhdx =
∫

Ω

fvhdx, ∀ vh ∈ Wh. (2.4)

We note that in both formulations (2.3) and (2.4), the fine-scale system is
multiplied by coarse-scale test functions and, thus, the resulting system is
coarse-dimensional.

Equation (2.3) or (2.4) couples the multiscale basis functions. This gives
rise to a linear system of equations for finding the values of the solution at the
nodes of the coarse-grid block, thus, the resulting system of linear equations
determines the solution on the coarse grid. To show this, for simplicity, we
consider the Petrov–Galerkin formulation of the MsFEM (see (2.4)). Repre-
senting the solution in terms of multiscale basis functions, ph =

∑
i piφi, it is

easy to show that (2.4) is equivalent to the following linear system,

Apnodal = b, (2.5)

where A = (aij), aij =
∑

K

∫
K

k∇φi∇φ0
jdx. pnodal = (p1, ..., pi, ...) are the

nodal values of the coarse-scale solution, and b = (bi), bi =
∫

Ω
fφ0

i dx.
Here, we do not consider the discretization of boundary conditions. As in
the case of standard finite element methods, the stiffness matrix A has
sparse structure. We note that the computation of the stiffness matrix re-
quires the integral computation for aij and bi. The computation of aij re-
quires the evaluation of the integrals on the fine grid. One can use a simple
quadrature rule, for example, one point per fine grid cell. In this case,∫

K
k∇φi∇φ0

jdx ≈
∑

τ⊂K(k∇φi)|τ∇φ0
j , where τ denotes a fine grid block and

(k∇φi)|τ is the value of the flux within a fine grid block τ . Note that when
source terms or mobilities change, one can pre-compute the stiffness matrix
once and re-use it. For example, if the source terms change, the stiffness ma-
trix will remain the same and one needs to re-compute bi. If mobilities (λ(x)
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in (1.2)) change and remain a smooth function, one can modify aij using a
piecewise constant approximation for λ(x). In this case, the modified stiffness
matrix elements aλ

ij have the form aλ
ij ≈

∑
K λK

∫
K

k∇φi∇φ0
jdx, where aλ

ij

are the elements of the stiffness matrix corresponding to (1.2), λK are approx-
imate values of λ(x) in K, and the integrals

∫
K

k∇φi∇φ0
jdx are pre-computed.

Later on, we derive some explicit expressions for the elements of the stiffness
matrix in the one-dimensional case.

If the local computational domain is chosen to be smaller than the coarse-
grid block, then one can use an approximation of the basis functions in RVE
(local domain) to represent the left-hand side of (2.4) (or (2.3)). We assume
that the information within RVE can be used to characterize the local solution
within the coarse-grid block such that

1
|K|

∫

K

k∇φidx ≈ 1
|Kloc|

∫

Kloc

k∇φ̃idx, (2.6)

where Kloc refers to local computational region (RVE) and φ̃i is the basis
function defined in Kloc and given by the solution of div(k∇φ̃i) = 0 in Kloc

with boundary conditions φ̃i = φ0
i on ∂Kloc. Equation (2.6) holds, for example,

in the general G-convergence setting where homogenization by periodization
(also called the principle of periodic localization) can be performed (see [164])
and the size of the RVE is assumed to be much larger than the characteristic
length scale. One can approximate the left-hand side of (2.4) based on RVE
computations. In particular, the elements of the stiffness matrix (see (2.5))
aij =

∑
K

∫
K

k∇φi∇φ0
jdx can be approximated using

1
|K|

∫

K

k∇φi∇φ0
jdx ≈ 1

|Kloc|

∫

Kloc

k∇φ̃i∇φ0
jdx.

A similar approximation can be done for (2.3). In the general G-convergence
setting, this approximation holds in the limit limh→0 limε→0 (see Section 2.6
for details), and for periodic problems, one can justify this approximation in
the limit limε/h→0. In periodic problems, one can also take advantage of two-
scale homogenization expansion and this is discussed in Section 2.6 along with
further discussions on the use of smaller regions. Similar approximation can
be done for the right-hand side of (2.4) (or (2.3)).

As we discussed earlier, using multiscale basis functions, a fine-scale ap-
proximation of the solution can be easily computed. In particular, ph =∑

i piφi provides an approximation of the solution, where pi are the values of
the solution at the coarse nodes obtained via (2.5). When regions smaller than
the coarse-grid block are used for computing basis functions, ph =

∑
i piφi

provides approximate fine-scale details of the solution only in RVE regions.
One can use the periodic homogenization concept to extend the fine-scale
features in RVE to the entire domain. This is discussed in Section 2.6.

In the above discussion, we presented the simplest basis function construc-
tion and a global formulation. In general, the global formulation can be easily
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modified and various global formulations based on finite volume, mixed fi-
nite element, discontinuous Galerkin finite element, and other methods can
be derived. Many of them are studied in the literature and some of them are
discussed here.

As for basis functions, the choice of boundary conditions in defining the
multiscale basis functions plays a crucial role in approximating the multiscale
solution. Intuitively, the boundary condition for the multiscale basis function
should reflect the multiscale oscillation of the solution p across the boundary
of the coarse grid element. By choosing a linear boundary condition for the
basis function, we create a mismatch between the exact solution p and the
finite element approximation across the element boundary. In Section 2.3, we
discuss this issue further and introduce a technique to alleviate this difficulty.
We would like to note that in the one-dimensional case this issue is not present
because the boundaries of the coarse element consist of isolated points.

The MsFEM can be naturally extended to solve nonlinear partial differ-
ential equations. As in the case of linear problems, the main idea of MsFEM
remains the same with the exception of basis function construction. Because of
nonlinearities, the multiscale basis functions are replaced by multiscale maps,
which are in general nonlinear maps from Wh to heterogeneous fields (see
Chapter 3).

Pseudo-code. MsFEM can be implemented within an existing finite el-
ement code. Below, we present a simple pseudo-code that outlines the im-
plementation of MsFEM. Here, we do not discuss coarse-grid generation. We
note that the latter is important for the accuracy, robustness, and efficient
parallelization of MsFEM and is briefly discussed in Section 2.9.3.

Algorithm 2.2.1

Set coarse mesh configuration from fine-scale mesh information.
For each coarse grid block n do
– For each vertex i
– Solve for φi

n satisfying – L(φi
n) = 0 and boundary conditions (see (2.2))

– End for.
End do
Assemble stiffness matrix on the coarse mesh (see (2.5), also (2.3) or (2.4)).
Assemble the external force on the coarse mesh (see (2.5), also (2.3) or
(2.4)).
Solve the coarse formulation.

Comments on the assembly of stiffness matrix. One can use the represen-
tation of multiscale basis functions via fine-scale basis functions to assemble
the stiffness matrix. This is particularly useful in code development. Assume
that multiscale basis function (in discrete form) φi can be written as
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φi = dijφ
0,f
j ,

where D = (dij) is a matrix and φ0,f
j are fine-scale finite element basis func-

tions (e.g., piecewise linear functions). The ith row of this matrix contains the
fine-scale representation of the ith multiscale basis function. Substituting this
expression into the formula for the stiffness matrix aij in (2.3), we have

aij =
∫

Ω

k∇φi∇φjdx = dil

∫

Ω

k∇φ0,f
l ∇φ0,f

m dx djm.

Denoting the stiffness matrix for the fine-scale problem by Af = (af
lm), af

lm =
∫

Ω
k∇φ0,f

l ∇φ0,f
m dx we have

A = DAfDT .

Similarly, for the right-hand side, we have b =
∫

Ω
φifdx = Dbf , where bf =

(bf
i ), bf

i =
∫

Ω
fφ0,f

i dx. This simplification can be used in the assembly of the
stiffness matrix. The similar procedure can be done for the Petrov–Galerkin
MsFEM (see (2.4)).

One-dimensional example. In one-dimensional case, the basis functions
and the stiffness matrix (see (2.5)) can be computed almost explicitly. For
simplicity, we consider

−(k(x)p′)′ = f,

p(0) = p(1) = 0, where ′ refers to the spatial derivative. We assume that the
interval [0, 1] is divided into N segments 0 = x0 < x1 < x2 < · · · < xi <
xi+1 < · · · < xN = 1. The multiscale basis function for the node i is given by

(k(x)φ′
i)

′ = 0 (2.7)

with the support in [xi−1, xi+1]. In the interval [xi−1, xi], the boundary con-
ditions for the basis function φi are defined as φi(xi−1) = 0, φi(xi) = 1. In
the interval [xi, xi+1], the boundary conditions for the basis function φi are
defined as φi(xi) = 1, φi(xi+1) = 0. Note that for the computation of the
elements of the stiffness matrix, we do not need an explicit expression of φi

and instead, we simply need to compute k(x)φ′
i. From (2.7), it is easy to

see that k(x)φ′
i = const, where the constants are different in [xi−1, xi] and

[xi, xi+1]. This constant can be easily computed by writing φ′
i = const/k(x)

and integrating it over [xi−1, xi]. This yields

k(x)φ′
i =

1
∫ xi

xi−1

dx
k(x)

on [xi−1, xi] and

k(x)φ′
i = − 1

∫ xi+1

xi

dx
k(x)
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on [xi, xi+1]. Then, the elements of the stiffness matrix A (see (2.4)) are given
by

aij =
∫ xi

xi−1

k(x)φ
′

i(φ
0
j )

′
dx +

∫ xi+1

xi

k(x)φ
′

i(φ
0
j )

′
dx

=
1

∫ xi

xi−1

dx
k(x)

∫ xi

xi−1

(φ0
j )

′
dx − 1

∫ xi+1

xi

dx
k(x)

∫ xi

xi−1

(φ0
j )

′
dx.

(2.8)

Taking into account that
∫ xi

xi−1
(φ0

i−1)
′
dx = −1,

∫ xi

xi−1
(φ0

i )
′
dx = 1,

∫ xi+1

xi
(φ0

i )
′
dx

= −1,
∫ xi+1

xi
(φ0

i+1)
′
dx = 1, we have

ai,i−1 = − 1
∫ xi

xi−1

dx
k(x)

, aii =
1

∫ xi

xi−1

dx
k(x)

+
1

∫ xi+1

xi

dx
k(x)

, ai,i+1 = − 1
∫ xi+1

xi

dx
k(x)

.

Consequently, the stiffness matrix has a tridiagonal form and the linear system
is (2.5), where bi =

∫ 1

0
fφ0

i dx.
In Figure 2.3, we illustrate the solution and a few multiscale basis func-

tions. We refer to [147] for the analysis in the one-dimensional case.
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Fig. 2.3. An illustration of one-dimensional basis functions and the solution.

2.3 Reducing boundary effects

2.3.1 Motivation

The boundary conditions for the basis functions play a crucial role in cap-
turing small-scale information. If the local boundary conditions for the basis
functions do not reflect the nature of the underlying heterogeneities, MsFEMs
can have large errors. These errors result from the resonance between the
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coarse-grid size and the characteristic length scale of the problem. When the
coefficient k(x) is a periodic function varying over the ε scale (k(x) = k(x/ε)),
the convergence rate of MsFEM contains a term ε/h (see [147]), which is large
when h ≈ ε. Recall that h is the coarse mesh size. As illustrated by the error
analysis of [147], the error due to the resonance manifests as a ratio between
the wavelength of the small-scale oscillation and the grid size; the error be-
comes large when the two scales are close. A deeper analysis based on the
homogenization theory shows the main source of the resonance effect. By a
judicious choice of boundary conditions for basis functions, we can reduce the
resonance errors significantly. Some approaches including the use of reduced
problems based on the solutions of one-dimensional problems along the bound-
aries (e.g., [145, 159, 160]) and oversampling methods (e.g., [145, 107, 73]) are
studied in the literature with the goal of reducing resonance errors. In gen-
eral, one can construct multiscale basis functions in various different ways
(see, e.g., [266, 273] for energy minimizing basis functions). Here, we focus on
oversampling methods.

Next, we present an outline of the analysis that motivates the over-
sampling method. We consider a simple case with two distinct scales (i.e.,
k(x) = k(x, x/ε)) and assume that k is a periodic function with respect to
x/ε. In this case, the solution has a well-known multiscale expansion (see, e.g.,
[43, 164] or Appendix B)

p = p0 + εχj ∂

∂xj
p0 + εθp

ε ,

where p0 satisfies the homogenized equation −div(k∗(x)∇p0) = f . The ho-
mogenized coefficients are defined via an auxiliary (cell) problem over a period
of size ε. To illustrate this, we denote the fast variable by y = x/ε and, thus,
the coefficients have the form k(x, y). Then, k∗(x) = (1/|Y |)

∫
Y

k(x, y)(I +
∇yχ(x, y))dy, where χ = (χ1, ..., χd) is a solution of

divy(k(x, y)(I + ∇yχ(x, y))) = 0 (2.9)

in the period Y for a fixed x (see [43, 164] for more details). For simplicity,
one can assume that x represents a coarse grid block. If there is no slow
dependence with respect to x in the coefficients, k = k(x/ε) = k(y), then
there is only one cell problem (2.9) for the entire domain Ω. It can be shown
that p0 + εχj∂p0/∂xj approximates the solution p in H1 norm for small ε (see
[43, 164] or Appendix B for the details).

Following multiple scale expansion, as discussed above (see also Appendix
B), we can write a similar expansion for the basis function

φi = φ1
i + εθε, (2.10)

where φ1
i = φ0

i + εχj∂φ0
i /∂xj is the part of the basis function that has the

same nature of oscillations near boundaries as the approximation of the fine-
scale solution p0 + εχj∂p0/∂xj . Assuming φ0

i is a linear function, it can be



22 2 MsFEMs for linear problems and overview

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1

−0.5

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.1

−0.05

0

0.05

0.1

Fig. 2.4. An illustration of boundary layer function θε. Left: θε in the coarse ele-
ment with oscillatory boundary conditions. Right: θε in ε distance away from the
boundaries.

easily shown that θε satisfies div(k∇θε) = 0 in K and θε = −χj∂φ0
i /∂xj on

∂K. If one can ignore εθε in (2.10), then MsFEM will converge independently
of the resonance error. The term εθε is due to the mismatch between the fine-
scale solution and multiscale finite element solution along the boundaries of
the coarse-grid block where the multiscale finite element solution is linear.
This mismatch error propagates into the interior of the coarse-grid block. The
analysis shows that the MsFEM error is dominated by θε. In Figure 2.4, we
depict θε(x) and the same θε(x) which is ε distance away from the boundaries.
It is clear from this figure that the oscillations decay quickly as we move away
from the boundaries. To avoid these oscillations, one needs to sample a larger
domain and use only interior information to construct the basis functions. The
decay of these oscillations basically dictates how large the sampling region
should be chosen.

2.3.2 Oversampling technique

Motivated by the above discussion and the convergence analysis of [147], Hou
and Wu proposed an oversampling method in [145] to overcome the difficulty
due to scale resonance. Because the boundary layer in the first-order corrector
is thin, we can sample in a domain with the size larger than h and use only
the interior sampled information to construct the basis functions. By doing
this, we can reduce the influence of the boundary layer in the larger sample
domain on the basis functions significantly. It is intuitively clear from Figure
2.4 that the effects of artificial boundary conditions are significantly reduced
for this special two-scale example.

Specifically, let φE
j be the basis functions satisfying the homogeneous el-

liptic equation in the larger domain KE ⊃ K (see Figure 2.5). We then form
the actual basis φi by linear combination of φE

j ,
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φi =
d∑

j=1

cijφ
E
j .

The coefficients cij are determined by condition φi(xj) = δij , where xj are
nodal points. Extensive numerical experiments have demonstrated that the
oversampling technique does improve the numerical error substantially in
many applications. Some numerical examples are presented in Section 2.9.
On the other hand, the oversampling technique results in a nonconforming
MsFEM method, where the basis functions are discontinuous along the edges
of coarse-grid blocks. In [107] we perform a careful estimate of the noncon-
forming errors. The analysis shows that the nonconforming error is indeed
small, and consistent with our numerical results [145, 146]. Our analysis also
reveals another source of resonance, which is the mismatch between the mesh
size and the “perfect” sample size. In the case of a periodic structure, the
“perfect” sample size is the length of an integer multiple of the period. We
call the new resonance the “cell resonance”. In the error expansion, this reso-
nance effect appears as a higher-order correction. In numerical computations,
we found that the cell resonance error is generally small, and is rarely ob-
served in practice. Nonetheless, it is possible to completely eliminate this cell
resonance error by using the oversampling technique to construct the basis
functions, but using piecewise linear functions as test functions. This reduces
the resonance error further (see [143]).

2.4 Generalization of MsFEM: A look forward

Next, we present a general framework of MsFEMs (following Efendiev, Hou,
and Ginting [104]) which is further discussed in Chapter 3. Consider

Lp = f, (2.11)
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where L : X → Y is an operator. The objective of the MsFEM is to ap-
proximate p on the coarse grid. Denote by Wh a family of finite-dimensional
space such that it possesses an approximation property (see [274], [229]), as
before. Here h, as before, is a scale of computation (coarse grid). In gen-
eral, multiscale basis functions are replaced by multiscale maps defined as
EMsFEM : Wh → Ph. For each element vh ∈ Wh, vr,h = EMsFEMvh is
defined as

Lmapvr,h = 0 in K, (2.12)

where Lmap can be, in general, different from L (e.g., can be a discrete opera-
tor). Note that vh (the quantity with the subscript h) denotes the coarse-scale
approximation and vr,h (the quantity with the subscript r, h) denotes the fine-
scale approximation. For linear problems, we simply used the subscript h to
denote fine-scale approximations.

Note that Lmap allows us to capture the effects of the small scales. More-
over, the domains different from the target coarse block K can be used in
the computations of the local solutions. To solve (2.12) one needs to impose
boundary and initial conditions. This issue needs to be resolved on a case-
by-case basis, and the main idea is to interpolate vh onto the underlying fine
grid.

To find a solution of (2.11) in Ph, one can substitute ph (which denotes
a coarse-scale solution defined in Wh) into (2.11) discretized on the fine grid.
Because ph is defined on the coarse grid, the resulting system is projected onto
the coarse-dimensional space. This can be done in various ways. A common
approach is to multiply the resulting fine-scale system by coarse-scale test
functions; that is find ph ∈ Wh (consequently pr,h ∈ Ph) such that

〈Lglobalpr,h, vh〉 = 〈f, vh〉, ∀vh ∈ Wh, (2.13)

where 〈·, ·〉 denotes a duality between X and Y (defined for the discrete vari-
ational formulation), and Lglobal can be, in general, different from L. We note
that the fine-scale system Lglobalpr,h − f is multiplied by coarse-scale test
functions. One can also minimize the residual Lglobalpr,h − f at some nodes
to obtain a coarse-dimensional problem. Other approaches based on upscaled
equations can also be used (see Section 5.4). In general, Lmap and Lglobal can
be different for nonlinear problems. Moreover, ph can represent only some of
the physical variables involved in the simulations (see Section 5.4).

The convergence of the MsFEM is to show that ph ≈ p∗ and pr,h ≈ p
in appropriate spaces for small h, where pr,h = EMsFEMph. Here p∗ is a
coarse-scale solution of (2.11). The correct choices of Lmap and Lglobal are the
essential part of MsFEM and guarantee the convergence of the method. We
note that for linear elliptic equations, Lmap is a linear map, and consequently,
Ph is a linear space spanned by EMsFEMφ0

j , where φ0
j ∈ Wh. This formulation

is equivalent to linear MsFEMs introduced earlier.
MsFEMs can be easily extended to the system of linear equations, such as

elasticity equations (e.g., [235]),
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div(C : E(u)) = f,

where C is the fourth-order stiffness tensor representing material properties,
u is the displacement field (vector), and E(u) = 1

2 (∇u + (∇u)T ) is the small
strain tensor. In this case, multiscale basis functions will satisfy the local
homogeneous equations Lφi = 0 in K, φi = φ0

i on ∂K, where L is the elasticity
operator, Lu = div(C : (1

2 (∇u + (∇u)T ))). Note that the basis functions are
vector fields. Vector fields φ0

i are standard finite element basis functions used
for solving the system of equations. For example, for elasticity equations,
φ0

i are linear functions for each element of the vector field (see [235]). The
variational formulation that couples these basis functions will remain similar
to (2.3) (or (2.4)).

We note that a main feature of MsFEMs presented in this book is the use
of a variational formulation at the coarse scale that allows us to couple mul-
tiscale basis functions. Multiscale basis functions or multiscale maps defined
by (2.12) are not necessarily based on partial differential equations and can
have a discrete structure and satisfy a discrete equation at the fine grid. It is
evident from the above abstract formulation that Lmap is used only for the
computation of pr,h (given ph) and the variational formulation (2.13) can be
chosen in different ways depending on the problem. One can consider general
applications of MsFEMs involving discrete problems where the basis functions
satisfy discrete systems. For example, one can consider an application where
the coarse-scale equations have a continuum formulation and describe porous
media flows, whereas the local problems are discrete and solved via the pore
network model. MsFEMs can be used to deal with these problems.

2.5 Brief overview of various global couplings
of multiscale basis functions

2.5.1 Multiscale finite volume (MsFV) and multiscale finite
volume element method (MsFVEM)

Mass conservative schemes play a central role in subsurface applications. For
this reason, it is important to consider methods that can provide a mass
conservative approximation for the flux defined by v = −k∇p. One of these
methods within a finite volume context was first proposed in [159]. The main
idea of this approach is to use a finite volume global formulation with multi-
scale basis functions and obtain a mass conservative velocity field on a coarse
grid. A similar approach was independently proposed later in [104, 133] where
a finite volume element method was used. These approaches differ in their de-
tails as discussed later. In these approaches, the finite volume element method
is taken as a global coupling mechanism for multiscale basis functions. The
construction of basis functions remains the same as discussed earlier.

To demonstrate the concept of MsFV as well as MsFVEM, we assume Th

is the collection of coarse elements K. We introduce a dual grid and denote
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K

Kd

Coarse grid centers 
(control volume vertices)

(target coarse block vertices)
Control volume centers 

Fig. 2.6. Schematic of nodal points and coarse grids.

it by Kd (see Figure 2.6 for illustration in the case of simple rectangular
grids). Furthermore, we denote the vertices of dual coarse grids by xKd

(their
collection by ZKd

) and the vertices of target coarse-grid blocks by xK (their
collection by ZK).

As before, the key idea of the method is the construction of basis functions
on the coarse grids, such that these basis functions capture the small-scale in-
formation. As in the case of MsFEM, the basis functions are constructed from
the solution of the leading-order homogeneous elliptic equation on each coarse
element with some specified boundary conditions. To demonstrate MsFV, we
denote by Ph the space spanned by the basis functions {φj}xj∈ZKd

as defined
before (see (2.2)). In MsFV, the basis functions on the dual grid are used
and a mass conservation equation is set up on the target coarse-grid blocks.
In particular, we seek ph ∈ Ph with ph =

∑
xj∈Z0

Kd

pjφj (where pj are the

approximate values of the solution at xKd
and Z0

Kd
is the collection of interior

vertices) such that ∫

∂K

k∇ph · ndl =
∫

K

fdx, (2.14)

for every target coarse-grid block K ∈ Th. Here n defines the normal vector
on the boundary. The equation (2.14) results in a system of linear equations
for the solution values at the nodal points of the coarse mesh. In particular,
we have

Apnodal = b,

where A = (aij), aij =
∑

j

∫
∂Kj

k∇φi · ndl, bj =
∫

Kj
fdx. Here j refers to the

index of the coarse-grid block Kj .
In MsFVEM, the basis functions on the target coarse-grid blocks are cho-

sen and the mass conservation equation is set up on the dual grid. We do
not repeat the formulation here. The resulting multiscale method differs from
the MsFEM, because it employs the finite volume or finite volume element



2.5 Various global couplings of multiscale basis functions 27

method as a global solver. We would like to note that the coarse-scale veloc-
ity field obtained using MsFVEM is conservative in control volume elements,
whereas the velocity field obtained using MsFV is conservative in coarse ele-
ments. Further treatment is needed to obtain a conservative velocity field on
the fine grid (see [159]).

Pseudo-code. We present a pseudo-code for the implementation of MsFV.

Algorithm 2.5.1

Set coarse mesh configuration from fine-scale mesh information.
For each coarse grid block n do
– For each control volume element i associated with the coarse block n
– Solve for φi

n satisfying - L(φi
n) = 0 and boundary conditions (see (2.2))

– End for.
End do.
Assemble the mass balance equation on the coarse grid according to (2.14).
Assemble the external force on the coarse mesh according to (2.14).
Solve the coarse grid formulation.

2.5.2 Mixed multiscale finite element method

MsFV and MsFVEM introduced earlier provide a mass conservative velocity
field (defined as v = −k∇p) on the coarse grid. However, the reconstructed
fine-scale velocity field (using multiscale basis functions) is not conservative
for the fine grid elements adjacent to coarse grid boundaries. For multiphase
flow and transport simulations, the conservative fine-scale velocity is often
needed. A treatment within MsFV is proposed in [159]. In this section, we
present a mixed MsFEM where multiscale basis functions for the velocity
field, which is highly heterogeneous, are constructed. This method allows us
to achieve a mass conservative fine-scale velocity field and is used in Chapter
5 for multiphase flow simulations in heterogeneous porous media.

Our presentation of mixed MsFEM follows [71] (see also [25], [1], and [26]).
First, we re-write the elliptic equation in the form

k−1v + ∇p = 0 in Ω

div(v) = f in Ω
(2.15)

with non-homogeneous Neumann boundary conditions v · n = g on ∂Ω. In
mixed multiscale finite element methods, the basis functions for the velocity
field, v = −k∇p, are needed. As in the case of MsFEM, one can use known
mixed finite element spaces to construct these basis functions. For simplicity,
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we consider multiscale basis functions corresponding to lowest-order Raviart–
Thomas elements (following [71], [25]). The basis functions for the velocity in
each coarse block K is given by

div(k∇φK
i ) =

1
|K| in K

k∇φK
i · n =

{
gK

i on eK
i

0 else,

(2.16)

where gK
i = 1/|eK

i | and eK
i are the edges of K (see Figure 2.7 for the illustra-

tion). Note that these basis functions are defined for each edge by imposing
constant flux along an edge (constant Neumann boundary condition) and zero
flux over all other edges of the coarse-grid block. In order to preserve the total
mass and have a well-posed system, some source term is needed. The source
term is taken to be constant.

We define the finite-dimensional space for the velocity by

Vh = span{ψK
i },

where ψK
i = k∇φK

i . For each edge ei, one can combine the basis functions
in adjacent coarse-grid blocks and obtain the basis function for the edge ei

denoted by ψi (or ψei
). More precisely, if we denote by K1 and K2 adjacent

coarse-grid blocks, then ψi solves (2.16) in K1 and solves div(ψi) = −1/|K2| in
K2, and gK2

i = −1/|ei| on eK2
i and 0 otherwise. In other words, ψi = ψK1

i in K1

and ψi = −ψK2
i in K2, where ψK

i is defined via the solution of (2.16). This is
illustrated in Figure 2.8. In [1], the author proposes a different construction for
mixed multiscale basis functions by solving the local problem in two adjacent
coarse grid blocks with zero Neumann boundary conditions and imposing
positive and negative source terms. For example, div(ψi) = 1/|K1| in K1,
div(ψi) = −1/|K2| in K2, and ψi · n = 0 on outer boundaries of K1

⋃
K2.

The basis functions for the pressure are piecewise constant functions over
each K. We denote the span of these basis functions by Qh. The multiscale
basis functions, as in MsFEM, attempt to capture the small-scale information
of the media. The functions ψK

i are the basis functions for the velocity field
and conservative both on the fine and coarse grids provided the local problems
are solved using a conservative scheme. An approximation of the fine-scale
velocity field can be obtained if average fluxes along the coarse edges are
known, that is if ve is the average normal flux along the edge e and ψe is
the corresponding basis function, then v ≈

∑
e veψe is an approximation of

the fine-scale velocity field. These average fluxes, for example, can be also
obtained from MsFV or MsFVEM or by using upscaling methods as in, for
example, [91]. A similar idea is presented in [159] and [1]. The mixed finite
element framework, presented next, couples the velocity and pressure basis
functions and provides an approximation of the global solution (both p and
v).
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coarse grid block

 n =1/|e|
ψ

ψψ. n =1/|e|

.

   n =0ψ .

     n =0ψ .

div(  )=1/|K|

ψ          n =0

=k grad(φ)

Fig. 2.7. Schematic description of a velocity basis function construction in a coarse
grid block.

ψ.

coarse grid block

ψ =k grad(φ)

ψ .     n =0

ψ .          n =0

ψ

=k grad(φ)ψ
coarse grid block

ψ     n =0.

ψ          n =0.

 n =1/|e|ψ.
ψ. n =−1/|e|

div(ψ)=1/|K |1
div(   )=−1/|K |2

   n =0
n =0ψ.

Fig. 2.8. Schematic description of a velocity basis function for an edge combining
adjacent basis functions.

To formulate the mixed MsFEM, we use the numerical approximation
associated with the lowest-order Raviart–Thomas mixed finite element to find
{vh, ph} ∈ Vh × Qh such that vh · n = gh on ∂Ω, where gh = g0,h · n on ∂Ω
and g0,h =

∑
e∈{∂K

⋂
∂Ω,K∈Th}(

∫
e
gds)ψe, ψe ∈ Vh is the corresponding basis

function to edge e,
∫

Ω

k−1vh · whdx −
∫

Ω

div(wh)phdx = 0, ∀wh ∈ V0
h

∫

Ω

div(vh)qhdx =
∫

Ω

fqhdx, ∀qh ∈ Qh,

(2.17)

where V0
h is a subspace of Vh with elements that satisfy homogeneous Neu-

mann boundary conditions. The above formulation was the mixed MsFEM
introduced in [71].
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The discrete formulation of (2.17) can be easily written down as
[

A C
CT 0

] [
vD

−pD

]

=
[

0
b

]

, (2.18)

where v =
∑

i vD
i ψi and p =

∑
i pD

i qi with vD
i being normal interface fluxes

and pD
i being the cell average solution. Here A = (aij), C = (cik), and b = (bk)

are defined by

aij =
∫

Ω

ψi · (k)−1ψjdx, cik =
∫

Ω

qk div(ψi)dx and bk =
∫

Ω

qkfdx.

This linear system is indefinite, and thus it is in general harder to solve than
the positive definite systems that arise (e.g., from Galerkin finite element dis-
cretizations). However, it is common to solve the mixed linear system (2.18)
by using a so-called hybrid formulation. In the hybrid formulation the system
(2.18) is localized by introducing an extra set of unknowns representing p at
the grid cell interfaces. By performing some simple algebraic manipulations,
we then obtain a positive definite system that is solved for the interface pres-
sures. Finally, the solution to (2.18) is computed from the solution to the
hybrid system by performing local algebraic calculations.

We note that in [10], a discontinuous Galerkin method has been used as
a global coupling for multiscale basis functions and discontinuous Galerkin
MsFEM is proposed. We refer to [10] for details. We also refer to [16], for the
use of discontinuous Galerkin method within the framework of HMM.

Pseudo-code. Next, we briefly outline the implementation of mixed Ms-
FEM. We have put simple prototype MATLAB codes for solving elliptic equa-
tions with mixed MsFEM (courtesy of J. Aarnes) at
http : //www.math.tamu.edu/ ∼ yalchin.efendiev/codes/.

Algorithm 2.5.2

Set coarse mesh configuration from fine-scale mesh information.
For each coarse-grid block n do
– For each edge of a coarse-grid block
– Solve for ψi

n according to (2.16)
– End for
End do.
Assemble the coarse-scale system according to (2.17).
Assemble the external force on the coarse mesh according to (2.17).
Solve the coarse grid formulation.

Comments on the assembly of stiffness matrix. Similar to the Galerkin
MsFEM, one can use the representation of multiscale basis functions via fine-
scale basis functions to assemble the matrices in (2.18). It can be shown that
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A = DAfDT , where D = (dij) is a matrix defined by

ψi = dijψ
0,f
j

with ψ0,f
j being fine-scale basis functions, Af = (af

lm), af
lm =

∫
Ω

ψ0,f
l ·

(k)−1ψ0,f
m dx. This simplification can be used in the assembly of the stiffness

matrix.

2.6 MsFEM for problems with scale separation

In some applications, regions smaller than the coarse-grid block are sufficient
to represent the small-scale effects. In these applications, one can use the
basis functions constructed in a smaller region, instead of the coarse-grid
block, to capture the small-scale effects. The basic idea behind this localization
is that (1/|K|)

∫
K

k∇φidx in the computation of the stiffness matrix (2.4)
can be approximated by (1/|Kloc|)

∫
Kloc

k∇φ̃idx, where φi is the solution of
div(k∇φi) = 0 in K, φi = φ0

i on ∂K, and φ̃i is the solution of div(k∇φ̃i) = 0 in
Kloc, φ̃i = φ0

i on ∂Kloc. Here, Kloc refers to a smaller region (RVE) as before.
Next, we briefly discuss this approximation. Within the general G-convergence
theory (e.g., [164]), it can be shown that (e.g., [164])

lim
ε→0

1
|K|

∫

K

k∇φidx =
1
|K|

∫

K

k∗∇φ0
i dx, (2.19)

where ε is the characteristic length scale and φ0
i is the homogenized part of

the basis function. Note that the G-convergence theory does not assume pe-
riodicity and k∗(x) are homogenized coefficients independent of ε such that
the solution and the fluxes of the homogenized equation −div(k∗(x)∇p∗) = f
approximate the solution of fine-scale equation −div(k(x)∇p) = f in appro-
priate norms (we refer to, e.g., [164] for details). The same result holds for
(1/|Kloc|)

∫
Kloc

k∇φ̃idx; that is

lim
ε→0

1
|Kloc|

∫

Kloc

k∇φ̃idx =
1

|Kloc|

∫

Kloc

k∗∇φ̃0
i dx. (2.20)

Assuming that k∗(x) is sufficiently smooth, one can approximate k∗(x) within
each coarse block by a constant and show that the right-hand sides of (2.19)
and (2.20) are close for small h (note that Kloc ⊂ K). Consequently, for small
ε, the left-hand sides of (2.19) and (2.20) will be close; that is

lim
|K|→0

lim
ε→0

1
|K|

∫

K

k∇φidx = lim
|Kloc|→0

lim
ε→0

1
|Kloc|

∫

Kloc

k∇φ̃idx. (2.21)

The relation (2.21) shows that
∫

Kloc
k∇φ̃idx can be used to approximate

∫
K

k∇φidx in the limit limh→0 limε→0 (limit of scale separation). From here,
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one can show that the multiscale finite element solution approximates the
fine-scale solution in limh→0 limε→0. We refer to [108] for the details where
the more general problem is studied. For periodic problems, this approxima-
tion can be shown in the limit ε/hloc → 0 (where hloc is the size of Kloc) if
Kloc is much larger than the period size. If k∗(x) is sufficiently smooth and φ0

i

is piecewise linear, then (2.21) is equal to k∗(x0)∇φ0
i , where x0 is the point to

which the region K or Kloc contracts (see [164] for a more precise definition
of x0). In this case, the location of RVE within the coarse grid block is not
very important and one can choose RVE, for example, at the center of the
mass of the coarse element.

In the case of periodic heterogeneities, where the period is known, the
basis functions can be approximated using homogenization theory by

φj ≈ φ0
j + εχi ∂

∂xi
φ0

j , (2.22)

where the summation over repeated indices occurs. This approach derives
from homogenization and χ is a periodic solution (with average zero) of (2.9).
Consequently, the approximation of the basis functions can be carried out in a
domain of the size of the period that characterizes the small-scale oscillation
of k(x). This reduces the computational cost if the period is much smaller
than the coarse-grid block. With this approximation, the stiffness matrix (see
(2.5)) can be assembled in the periods instead of the coarse grid blocks:

aij =
∑

K

∫

K

k∇φi · ∇φ0
jdx ≈

∑

K

|K|
|Y |

∫

Y

k∇(φ0
j + εχi ∂

∂xi
φ0

j ) · ∇φ0
jdx,

(2.23)

where Y is the period within K. One can further approximate this expres-
sion and show that aij ≈

∑
K(|K|/|Y |)

∫
Y

k(I + ∇χ)∇φ0
j · ∇φ0

jdx. In [269],
the author uses the approximation of the basis functions based on (2.22) for
periodic coefficients and shows that MsFEM converges as the period size and
the mesh size go to zero.

As we discussed earlier, using multiscale basis functions, a fine-scale ap-
proximation of the solution can be easily computed, by ph =

∑
i piφi. When

regions smaller than the coarse-grid block are used for computing basis func-
tions, then the basis functions can be extended to a coarse-grid block based on
homogenization expansion. In particular, from the problem in Kloc (RVE) one
can easily extract χ and use it to construct an extension of the basis function
to the coarse-grid block. These basis functions can be further used to obtain
an approximate fine-scale solution in the entire domain.

We would like to note that this approximation procedure is not limited
to periodic problems and can be applied to problems where homogenization
by periodization (see the principle of periodic localization [164]) is true. The
random homogeneous case with ergodicity is one of these cases. The techniques
discussed in this section can be also used in MsFV, MsFEM, mixed MsFEM,
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and other multiscale methods when the problem has some special features
such as periodicity or strong scale separation.

2.7 Extension of MsFEM to parabolic problems

MsFEM can be naturally extended to parabolic equations. In this section, we
briefly describe the extension of MsFEM to the parabolic equation

∂

∂t
p(x, t) − div(k(x, t)∇p(x, t)) = f (2.24)

with appropriate boundary conditions on the finite time interval [0, T ] and
smooth initial conditions. In general, when there are space and time het-
erogeneities, basis functions are the solutions of the leading-order homo-
geneous parabolic equations. In the absence of time heterogeneities (i.e.,
k(x, t) = k(x)), one can use spatial basis functions developed for elliptic equa-
tions. To introduce MsFEM, we assume for simplicity that the interval [0, T ]
is divided into M equal parts 0 = t0 < t1 < · · · < tM = T . These intervals are
coarse-scale intervals; that is Δt = ti+1 − ti is larger than the characteristic
time scale. The basis functions are constructed in [tn, tn+1] as the solution of

∂

∂t
φi(x, t) − div(k(x, t)∇φi(x, t)) = 0 (2.25)

in each K such that φi = φ0
i on ∂K and φi(x, t = tn) = φ0

i . Here, φ0
i ∈ Wh

are standard finite element basis functions (e.g., piecewise linear functions).
We seek the finite-dimensional approximation of the solution in [tn, tn+1] as

pn+1
h (x, t) =

∑

i

pn+1
i φi(x, t), (2.26)

where pn+1
i (approximate nodal values of the solution) will be determined.

Then, substituting (2.26) into the original equation, multiplying it by φ0
i (as in

the Petrov–Galerkin formulation) and integrating over the space and [tn, tn+1],
we have

pn+1
i

∫

Ω

φi(x, tn+1)φ0
j (x)dx − pn

i

∫

Ω

φi(x, tn)φ0
j (x)dx

+
∫ tn+1

tn

∑

K

∫

K

k(x, t)∇ph(x, t) · ∇φ0
j (x)dxdt =

∫ tn+1

tn

∫

Ω

fφ0
j (x)dxdt,

(2.27)

where ph(x, t) =
∑

i pi(t)φi(x, t). The third term on the right-hand side can
be treated implicitly or explicitly. In particular, the implicit method is given
by
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pn+1
i

∫

Ω

φi(x, tn+1)φ0
j (x)dx − pn

i

∫

Ω

φi(x, tn)φ0
j (x)dx

+ pn+1
i

∫ tn+1

tn

∑

K

∫

K

k(x, t)∇φi(x, t) · ∇φ0
j (x)dxdt =

∫ tn+1

tn

∫

Ω

fφ0
j (x)dxdt.

(2.28)

If the third term is evaluated explicitly, that is it is replaced by

pn
i

∫ tn+1

tn

∑

K

∫

K

k(x, t)∇φi(x, t) · ∇φ0
j (x)dxdt,

then the resulting method is explicit. One can easily write down the corre-
sponding discrete formulation which we omit here.

We note that if there are no temporal heterogeneities (i.e., k(x, t) = k(x)),
the basis functions can be the solutions of elliptic equations as in the case
of elliptic equations. The equations for the basis functions can be simplified
depending on the relation between spatial and temporal heterogeneities (see
Section 3.5). Equation (2.25) defines the basis functions independent of the
relation between spatial and temporal heterogeneities. Furthermore, in the
case of scale separation, (2.25) can be solved in a smaller volume, RVE, and
this solution can be used in Equation (2.27) in a manner similar to the elliptic
case.

Finally, we would like to note that one can couple the basis functions
using different methods, such as finite volume element methods and so on. For
example, the mixed MsFEM for parabolic equations (with time-independent
coefficients, k(x, t) = k(x)) has the following formulation. We seek {vh, ph} ∈
Vh × Qh, such that

∫

Ω

∂ph

∂t
qhdx +

∫

Ω

div(vh) qhdx =
∫

Ω

fqhdx, ∀qh ∈ Qh

∫

Ω

k−1vh · whdx −
∫

Ω

div(wh) phdx = 0, ∀wh ∈ V0
h,

(2.29)

where Vh, V0
h, and Qh are defined as before (cf. (2.17)) for elliptic equations.

2.8 Comparison to other multiscale methods

MsFEMs share similarities with many other multiscale methods. One of the
early approaches is the upscaling technique (e.g., [91, 260, 47]) which is based
on the homogenization method. The main idea of upscaling techniques is to
form a coarse-scale equation and pre-compute the effective coefficients. In the
case of linear elliptic equations, the coarse-scale equation has the same form
as the fine-scale equation except that the coefficients are replaced by effective
homogenized coefficients. The effective coefficients in upscaling methods are
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computed using the solution of the local problem in a representative volume.
Various boundary conditions can be used for solving the local problems and,
for simplicity, we consider

div(k∇φe) = 0 in K (2.30)

with φe(x) = x·e on ∂K, where e is a unit vector. It is sufficient to solve (2.30)
for d linearly independent vectors e1, ..., ed in R

d because φe =
∑

i βiφei
if e =∑

i βiei. Here K denotes a coarse-grid block, although one can use a smaller
region as discussed in Section 2.6. The effective coefficients are computed in
each K as

k̃∗e =
1
|K|

∫

K

k∇φedx. (2.31)

We note that k̃∗ (which is not the same as the homogenized coefficients) is
a symmetric matrix provided k is symmetric and (2.31) can be computed for
any point in the domain by placing the point at the center of K, i.e.,

k̃∗(x0)e =
1

|Kx0 |

∫

Kx0

k∇φedx,

where Kx0 is the RVE with the center at x0 and φe is the local solution
defined by (2.30) in Kx0 . One can use various boundary conditions, including
periodic boundary conditions as well as oversampling methods. We refer to
[91, 260] for the discussion on the use of various boundary conditions. Once
the effective coefficients are calculated, the coarse-scale equation

− div(k̃∗∇p∗) = f (2.32)

is solved over the entire region.
To show the similarity to MsFEMs, we write down the discretization of

(2.32) using the Galerkin finite element method. Find p∗h ∈ Wh, such that

∑

K

∫

K

k̃∗∇p∗h · ∇vhdx =
∫

Ω

fvhdx, ∀vh ∈ Wh. (2.33)

Next, we write down the Petrov–Galerkin MsFEM discretization (see
(2.4))

aijpi = bj , (2.34)

where aij =
∑

K

∫
K

k∇φidx · ∇φ0
j (assuming φ0

j is piecewise linear) and bj =
∫

Ω
fφ0

jdx. One can show that

aij =
∑

K

∫

K

k̃∗∇φ0
i · ∇φ0

jdx

because (1/|K|)
∫

K
k∇φidx = k̃∗∇φ0

i . We assumed that φ0
i are piecewise lin-

ear functions. Thus, (2.34) and (2.33) are equivalent. This shows that the
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MsFEM can be derived from traditional upscaling methods. However, the
concept of MsFEMs differs from traditional upscaling methods, because the
local information is directly coupled via a variational formulation and we do
not assume a specific form for coarse-scale equations. Moreover, MsFEMs al-
low us to recover the local information adaptively which makes it a powerful
tool (e.g., for porous media flow simulations). More advantages of MsFEM
are discussed in later chapters.

Next, we briefly discuss the relation between variational multiscale ap-
proaches and MsFEM. These similarities are also shown in [26] in the context
of mixed finite element methods. Here, we discuss Galerkin finite element
methods. We assume that the fine-scale solution space XF is partitioned into
the coarse-dimensional space XC (e.g., Wh), and the space containing the
unresolved scales XU ,

XF = XC ⊕ XU .

We assume also that these spaces are the subspaces of H1
0 (Ω), for simplicity.

The fine-scale solution can be written accordingly as

p = pC + pU .

Substituting this into the original equation and multiplying by the test func-
tions from XC , we obtain the equation for the coarse-scale solution

∫

Ω

k∇(pC + pU ) · ∇vhdx =
∫

Ω

fvhdx, ∀vh ∈ XC . (2.35)

Similarly, multiplying the original equation by the test functions from XU , we
obtain the equation for the unresolved part of the solution

∫

Ω

k∇pU · ∇vhdx =
∫

Ω

fvhdx −
∫

Ω

k∇pC · ∇vhdx, ∀vh ∈ XU . (2.36)

To find the coarse-scale solution, pC , one first solves pU from (2.36) and sub-
stitutes it into (2.35) to compute pC . We note that (2.35) is exact and the
solution of (2.36) is nonlocal. In general, the solution of (2.36) can be localized
by imposing local boundary conditions. One can use various choices for the
boundary conditions. Noting the solution of the local problem can be written
via generic basis functions, one can derive a formulation similar to MsFEM.

To show the similarity between MsFEMs and variational multiscale meth-
ods, as an example, we consider the localization based on pU = 0 on the
boundaries of the coarse-grid block K. In this case, it is evident that the so-
lution pC + pU satisfies the local problem div(k∇(pC + pU )) = f in K and
pC + pU is a piecewise linear function on ∂K. This solution can be approx-
imated by multiscale finite element basis functions defined by (2.2). Thus,
we can seek pC + pU =

∑
i piφi. Substituting this expression into (2.35), we

obtain a Petrov–Galerkin formulation of MsFEM if φi are chosen with zero
right-hand side. We note that one of the differences between the variational
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multiscale method and MsFEM is that the former uses source terms in the
formulation of the local problems. The representation of source terms with
MsFEMs in the context of subsurface flows has been extensively studied in
the literature (e.g., see [13, 175], Sections 5.5, and 5.6) within the context of
subsurface flows. Typically, only singular source terms require special treat-
ment with multiscale basis functions.

As we mentioned earlier, one can take advantage of scale separation in Ms-
FEM. There are various ways to do so and these approaches will share similar-
ities, for example, with the application of heterogeneous multiscale methods
(HMM) ([97]), and multiscale enrichment methods ([121]). HMM has been
extensively studied in the literature (e.g., see [17, 15, 98, 203] for the appli-
cations to elliptic equations). The main idea of this approach is to use small
regions at quadrature points for the computation of effective coefficients. This
is performed on-the-fly when the stiffness matrix corresponding to the coarse-
scale problem is assembled. As mentioned above, multiscale basis functions
can be approximated when there is scale separation. The basic idea behind
this localization is that (1/|K|)

∫
K

k∇φidx (in the stiffness matrix, see (2.5))
can be approximated by (1/|Kloc|)

∫
Kloc

k∇φ̃idx, where φi is the solution of
div(k∇φi) = 0 in K, φi = φ0

i on ∂K, and φ̃i is the solution of div(k∇φ̃i) = 0 in
Kloc, φ̃i = φ0

i on ∂Kloc. Using the general G-convergence theory (e.g., [164]),
one can show (2.21). This result holds when k∗(x) is a smooth function and
(2.21) is equal to k∗(x0)∇φ0

i (assuming φ0
i is piecewise linear) at almost every

point x0 to which the region K and Kloc contract. For periodic problems,
k = k(x/ε), it is not difficult to show that

| 1
|K|

∫

K

k∇φidx − k∗∇φ0
i | ≤ C(

ε

h
+ h),

where k∗ is computed for the coarse-grid block according to (2.31). Similarly,

| 1
|Kloc|

∫

Kloc

k∇φ̃idx − k∗∇φ0
i | ≤ C(

ε

hloc
+ hloc).

Based on these results, one can show the convergence of MsFEMs using the
local information in Kloc. We refer to [108] for the details where a more general
problem is studied. This approximation of the basis functions and the corre-
sponding approximation of the stiffness matrix elements can save CPU time
if there is a strong scale separation. The method obtained in this way is very
similar to the application of HMM to elliptic equations, although it differs in
some details (e.g., the computations are not performed at quadrature points).
We would like to note that one can also use first-order corrector approxima-
tion for the basis functions as discussed earlier. In this case, the local solution
in RVE can be used as a cell problem solution εχ in (2.22). We would like to
mention that there are other approaches (e.g., [121, 122, 153]) which use the
solution of the cell problem to construct multiscale basis functions based on
the partition of unity method.
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As we mentioned in Section 1.2, multiscale methods considered in this book
differ from domain decomposition methods (e.g., [257]) where the local prob-
lems are solved many times iteratively to obtain an accurate approximation
of a fine-scale solution. Multiscale methods studied in this book share similar-
ities with upscaling/homogenization methods, where the basis functions are
computed based on coarse-grid information. Figure 2.9 illustrates the main
concept of the MsFEM and its advantages (see also Section 2.9). The multi-
scale methods attempt to find the coarse-scale solution and can also compute
an approximation of the fine-scale solution via downscaling. One can use iter-
ations (e.g., [93]) similar to domain decomposition methods or some type of
global information to improve the accuracy of multiscale methods when there
is no scale separation (see Chapter 4).

Finally, we remark that we restricted ourselves only to a few multiscale
methods due to the page limitation. One can find similarities between mul-
tiscale finite element methods and other multiscale methods known in the
literature. Some of these similarities may not be so apparent. Some of these
algorithms are designed for periodic problems and have advantages when the
underlying heterogeneities are periodic. For example, the approach proposed
in [198] is based on two-scale convergence concept ([21]). This approach is gen-
eralized to problems with multiple separable scales ([139]) using hierarchical
basis functions. In this book, we do not want to discuss the similarities be-
tween different multiscale methods to a great extent and instead focus on our
work on extensions and applications of various MsFEMs. We again stress that
the main idea of MsFEM stems from the earlier work of Babuška and Osborn
[33]. In Chapters 3 and 4, we show that the MsFEM can take advantage of
global information and can be naturally extended to nonlinear problems.

2.9 Performance and implementation issues

We outline the implementation of a Galerkin MsFEM for a simple test prob-
lem (following [145]) and define some notations that are used in the discus-
sion below. We consider solving problems in a unit square domain. Let N be
the number of elements in each coordinate direction. The mesh size is thus
h = 1/N . To compute the basis functions, each element is discretized into
M × M subcell elements with mesh size hf = h/M . To implement the over-
sampling method, we partition the domain into sampling domains where each
of them contains many elements. Analysis and numerical tests indicate that
the size of the sampling domains can be chosen freely as long as the boundary
layer is avoided. In practice, though, one wants to maximize the efficiency of
oversampling by choosing the largest possible sample size that reduces the
redundant computation of overlapping domains to a minimum.

In general, the multiscale basis functions are constructed numerically, ex-
cept for certain special cases. They are solved in each K or KE using a stan-
dard FEM. The global linear system on Ω is solved using the same method.
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Numerical tests show that the accuracy of the final solution is weakly insen-
sitive to the accuracy of basis functions.

Because the basis functions are independent of each other, their construc-
tion can be carried out in parallel perfectly. In a parallel implementation of
oversampling, the sample domains are chosen such that they can be handled
within each processor without communication. More implementation details
can be found in [145].

2.9.1 Cost and performance

In computations, a large amount of overhead time comes from constructing
the basis functions. This is also true for classical upscaling methods discussed
in Section 2.8. On a sequential machine, the operation count of the MsFEM
is about twice that of a conventional FEM for a 2D problem. However, due to
good parallel efficiency, this difference is reduced significantly on a massively
parallel computer (see [145] for a detailed study of the MsFEM’s parallel
efficiency). This overhead can be reduced if there is scale separation.

In practice, multiple solves are often required for different source terms,
boundary conditions, mobilities and so on. MsFEMs have advantages in such
situations and the overhead of basis construction can be negligible because
the basis functions can be re-used. This is illustrated in Figure 2.9, where
pre-computed multiscale basis functions can be re-used for different external
parameters such as source terms, boundary conditions and the like. Moreover,
multiscale basis functions can be used to re-construct the fine-scale features
of the solution in the regions of interest. This adaptivity is often used in
subsurface applications where the fine-scale features of the velocity (−k∇p)
are re-constructed in some regions where the detailed velocity information
is needed, for example, for updating sharp interfaces. In summary, MsFEMs
provide the following advantages in simulations: (1) parallel multiscale basis
function construction (which can be very cheap if there is scale separation);
(2) re-use of basis functions for different external parameters and inexpensive
coarse-scale solve; and (3) adaptive downscaling of the fine-scale features of
the solution in the regions of interest.

Significant computational savings are obtained for time-dependent prob-
lems such as those that occur in subsurface applications. In these problems,
the heterogeneities representing porous media properties do not change and
the basis functions are pre-computed at the initial time. These basis functions
are used throughout the simulations and the elliptic equations are solved on
the coarse grid each time. In this sense, our approaches are similar to classi-
cal upscaling methods where the upscaled quantities are pre-computed before
solving the equations on the coarse grid. In some situations, local basis func-
tion update is required, for example, if there is a sharp interface dividing two
propagating fluids. The interface modifies the permeability and this requires
local updates of the basis functions.
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Fig. 2.9. A schematic illustration of multiscale simulations and advantages.

2.9.2 Convergence and accuracy

Because we need to use an additional grid to compute the basis function
numerically, it makes sense to compare our MsFEM with a traditional FEM
at the subcell (fine) grid, hf = h/M . Note that the MsFEM captures the
solution at the coarse grid h, whereas FEM tries to resolve the solution at
the fine grid hf . Our extensive numerical experiments demonstrate that the
accuracy of the MsFEM on the coarse grid h is comparable to that of FEM
on the fine grid.

As an example, in Table 2.9.2 we present the results from [145] for

k(x/ε) =
2 + A sin(2πx1/ε)
2 + A cos(2πx2/ε)

+
2 + sin(2πx2/ε)

2 + A sin(2πx1/ε)
(A = 1.8), (2.37)

f(x) = −1 and p|∂Ω = 0. (2.38)

The convergence of three different methods is compared for fixed ε/h = 0.64,
where “-L” indicates that a linear boundary condition is imposed on the mul-
tiscale basis functions, “os” indicates the use of oversampling, and LFEM
stands for the standard FEM with bilinear basis functions.

We see clearly the scale resonance in the results of MsFEM-L and the
(almost) first-order convergence (i.e., no resonance) in MsFEM-os-L. The error
of MsFEM-os-L is smaller than that of LFEM obtained on the fine grid. In
[147, 145], more extensive convergence tests have been presented.

There have been many numerical studies of MsFEM, in particular, in the
context of multiphase flow simulations. Some of these results are presented
and discussed in the book.
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Table 2.1. Convergence for periodic case

MsFEM-L MsFEM-os-L LFEM
N ε ||E||l2 Rate ||E||l2 Rate MN ||E||l2
16 0.04 3.54e-4 7.78e-5 256 1.34e-4
32 0.02 3.90e-4 -0.14 3.83e-5 1.02 512 1.34e-4
64 0.01 4.04e-4 -0.05 1.97e-5 0.96 1024 1.34e-4
128 0.005 4.10e-4 -0.02 1.03e-5 0.94 2048 1.34e-4

2.9.3 Coarse-grid choice

We would like to remark that in MsFEM simulations, one is not restricted to
rectangular or box-shaped coarse and fine grids. In fact, as demonstrated in
a number of papers [11, 5], one can use an unstructured fine grid. Moreover,
the coarse grid can have an arbitrary shape and the only requirement on the
coarse grid is that every coarse grid consists of a connected union of fine-grid
blocks. In Figure 2.10, we present an example from [11]. As one can observe
from this figure the coarse-grid blocks have quite irregular shapes. In [9], the
authors develop gridding techniques that use single-phase flow information
(surrogate global information) to construct a coarse grid. The coarse grid is
chosen such that it minimizes the magnitude of the single-phase velocity field
variation within each coarse-grid block. This automatic coarse-grid generator
allows one to use an optimal coarse grid for accurate simulation purposes in
two-phase flow simulations. In Chapter 4, we discuss an extension of mixed
MsFEM to unstructured coarse grids and include a few numerical examples to
demonstrate its effectiveness. We would like to note that the fine grid blocks
in neighboring coarse-grid blocks do not need to match along the interface.

In general, an appropriate choice of the coarse-grid will improve the effi-
ciency and accuracy of multiscale methods. It is often possible that the so-
lution may have smooth variation along coarse grid boundaries if the coarse
grid is judiciously selected. This can lead to improved numerical results. Some
of these issues are discussed in Chapter 4. For computational purposes, it is
important that the coarse grid is more regular (for accuracy purposes) and
the number of fine-grid blocks within a coarse grid is approximately the same
(for load-balancing purposes).

2.10 An application to two-phase flow

MsFEMs and their modifications have been used with success in two-phase
flow simulations through heterogeneous porous media. First, we briefly de-
scribe the underlying fine-scale equations. We present two-phase flow equa-
tions neglecting the effects of gravity, compressibility, capillary pressure, and
dispersion on the fine scale. Porosity, defined as the volume fraction of the void
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Fig. 2.10. Unstructured fine and coarse grids (from [11]).

space, is taken to be constant and therefore serves only to rescale time. The
two phases are referred to as water and oil and designated by the subscripts
w and o, respectively. We can then write Darcy’s law, with all quantities
dimensionless, for each phase j (j = w, o) as follows;

vj = −λj(S)k∇p, (2.39)

where vj is phase velocity, S is water saturation (volume fraction), p is pres-
sure, λj = krj(S)/μj is phase mobility, where krj and μj are the relative
permeability and viscosity of phase j, respectively, and k is the permeability
tensor.

Combining Darcy’s law with conservation of mass, div(vw +vo) = 0, allows
us to write the flow equation in the following form

div(λ(S)k∇p) = qt, (2.40)

where the total mobility λ(S) is given by λ(S) = λw(S) + λo(S) and qt is a
source term representing wells/sources. The term qt = qw + qo represents the
total volumetric source term. The saturation dynamics affects the flow equa-
tions. One can derive the equation describing the dynamics of the saturation

∂S

∂t
+ div(vfw(S)) = −qw, (2.41)

where fw(S) is the fractional flow of water, given by fw = λw/(λw +λo). The
signs of the source terms that appear in (2.40) and (2.41) can be inter-changed.
The total velocity v is given by

v = vw + vo = −λ(S)k∇p. (2.42)

In the presence of capillary effects, an additional degenerate diffusion term is
present in (2.41).
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If krw = S, kro = 1 − S, and μw = μo, then the flow equation reduces to

div(k∇psp) = qt.

This equation is called single-phase flow equation.
For two-phase flow simulations, we first solve the coarse-scale pressure

equation using MsFVEM. More precisely, assuming that the solution S(x, t)
is known at time t = tn, we solve div(λ(S(x, tn))k∇p) = qt using MsFVEM
to compute p(x, tn+1) on the coarse grid. The fine-scale velocity v(x, tn+1) is
then re-constructed by solving a local fine-scale problem over each dual cell
with flux boundary conditions, as determined from the pressure solution. This
velocity is then used in the explicit solution of the saturation equation using
a first-order upwind method to compute S(x, tn+1). The overall procedure
is thus an IMPES (implicit pressure, explicit saturation) approach. We also
consider an approach where the coarse-scale velocity is used to update the
saturation field.

As we see from (2.40) and (2.41), the pressure equation is solved many
times for different saturation profiles. Thus, computing the basis functions
once at time zero is very beneficial and the basis functions are only updated
near sharp interfaces. In fact, our numerical results show that only slight
improvement can be achieved by updating the basis functions near sharp
fronts.

We present a representative numerical example for a permeability field
generated using two-point geostatistics. To generate this permeability field,
we have used the GSLIB algorithm [85]. The permeability is log-normally
distributed with prescribed variance σ2 = 1.5 (σ2 here refers to the variance
of log k) and some correlation structure. The correlation structure is specified
in terms of dimensionless correlation lengths in the x1- and x2-directions,
l1 = 0.4, and l2 = 0.04, nondimensionalized by the system length. Linear
boundary conditions are used for constructing multiscale basis functions. A
spherical variogram is used. In this numerical example, the fine-scale field is
120×120, and the coarse-scale field is 12×12 defined in the rectangle with the
length 5 and the width 1. For the two-phase flow simulations, the system is
considered to initially contain only oil (S = 0) and water is injected at inflow
boundaries (S = 1 is prescribed); that is we specify p = 1, S = 1 along the
x = 0 edge and p = 0 along the x = 5 edge, and no flow boundary conditions
on the lateral boundaries. Relative permeability functions are specified as
krw = S2, kro = (1 − S)2; water and oil viscosities are set to μw = 1 and
μo = 5. Source terms qw and qt are zero. Results are presented in terms of the
fraction of oil in the produced fluid, called fractional flow or oil-cut (designated
F ), against pore volume injected (PVI). Fractional flow is given by

F (t) = 1 −
∫

∂Ωout(v · n)f(S)ds
∫

∂Ωout v · nds
, (2.43)

where Ωout refers to the part of the boundary with outer flow; that is v ·n > 0.
PVI represents dimensionless time and is computed via
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Fig. 2.11. Fractional flow comparison for a permeability field generated using two-
point geostatistics.

PVI =
∫

Qdt/Vp, (2.44)

where Vp is the total pore volume of the system and Q =
∫

∂Ωout v · nds is the
total flow rate.

In Figure 2.11, we compare the fractional flows (oil-cut). The dashed line
corresponds to the calculations performed using a simple saturation upscaling
(no subgrid treatment) where (2.41) is solved with v replaced by the coarse-
scale v obtained from MsFVEM. Note that the coarse-scale v is defined as
a normal flux,

∫
∂K

v · ndl along the edge for each coarse-grid block. We call
this the primitive model because it ignores the oscillations of v within the
coarse-grid block in the computation of S. The dotted line corresponds to
the calculations performed by solving the saturation equation on the fine grid
using the reconstructed fine-scale velocity field. The fine-scale details of the
velocity are reconstructed using the multiscale basis functions. In these simu-
lations, the errors are due to MsFVEM. In the primitive model, the errors are
due to both MsFVEM for flow equations (2.40) and the upscaling in the satu-
ration equation (2.41). We observe from this figure that the second approach,
where the saturation equation is solved on the fine grid, is very accurate, but
the first approach overpredicts the breakthrough time. We note that the sec-
ond approach contains the errors only due to MsFVEM because the saturation
equation is solved on the fine grid. The first approach contains in addition to
MsFVEM’s errors, the errors due to saturation upscaling which can be large
if no subgrid treatment is performed. The saturation snapshots are compared
in Figure 2.12. One can observe that there is a very good agreement between
the fine-scale saturation and the saturation field obtained using MsFVEM.
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saturation plot at PVI=0.5 using standard MsFVEM
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Fig. 2.12. Saturation maps at PVI = 0.5 for fine-scale solution (left figure) and
standard MsFVEM (right figure).

2.11 Discussions

In this chapter, we presented an introduction to MsFEMs. We attempted
to keep the presentation accessible to a broader audience and avoided some
technical details in the presentation. One of the main ingredients of MsFEM
is the construction of basis functions. Various approaches can be used to
couple multiscale basis functions. This leads to multiscale methods, such as
mixed MsFEM, MsFVEM, DG-MsFEM, and so on. Most of the discussions
here focus on linear problems and local multiscale basis functions. We have
discussed the effects of localized boundary conditions and the approaches to
improve them. The relation to some other multiscale methods is discussed.

We would like to note that various multiscale methods are compared nu-
merically in [167]. In particular, the authors in [167] perform comparisons of
MsFVM, mixed MsFEM, and variational multiscale methods. Numerical re-
sults are performed for various uniform coarse grids and the sensitivities of
these approaches with respect to coarse grids are discussed. As we mentioned
earlier, one can use general, nonuniform, coarse grids to improve the accuracy
of local multiscale methods.

We discussed approximations of basis functions in the presence of strong
scale separation. In this case, the basis functions and the elements of the
stiffness matrix can be approximated using the solutions in smaller regions
(RVE). One can also approximate basis functions by solving the local prob-
lems approximately, for example, using approximate analytical solutions [250]
for some types of heterogeneities. In [192], the authors propose an approach
where the multiscale basis functions are computed inexpensively via multigrid
iterations. They show that the obtained method gives nearly the same accu-
racy on the coarse grid as MsFEM with accurately resolved basis functions.

In this chapter, we did not discuss adaptivity issues that are important for
multiscale simulations (see, e.g., [213, 38] for discussions on error estimates and
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adaptivity in multiscale simulations). The adaptivity for periodic numerical
homogenization within HMM is studied in [214]. In general, one would like to
identify the regions where the localization can be performed and the regions
where some type of limited global information is needed (see Chapter 4 for
the use of limited global information in multiscale simulations). To our best
knowledge, such adaptivity issues are not addressed in the literature with a
mathematical rigor.

In Section 6.1, we present analysis only for a few multiscale finite element
formulations. Our objective is to give the reader a flavor of the analysis, and
in particular, stress the subgrid capturing errors. We would like to note that
a lot of effort has gone into analyzing multiscale finite element methods. For
example, multiscale finite element methods have been analyzed for random ho-
mogeneous coefficients [99, 72], for highly oscillatory coefficients with multiple
scales [99], for problems with discontinuous coefficients [99], and for various
settings of MsFEMs. Our main objective in this book is to give an overview
of multiscale finite element methods and present representative cases for the
analysis. We believe the results presented in Section 6.1 will help the reader
who is interested in the analysis of multiscale finite element methods and, in
particular, in estimating subgrid capturing errors.


