
Chapter 2 

ELEMENTS OF CONVEX ANALYSIS, DUALITY 
THEORY 

The a posteriori error estimates presented in this work are derived based on 
the duality theory of convex analysis. The first research monograph specifi- 
cally devoted to the topic of convex analysis is [136], emphasizing the finite- 
dimensional case. Convex analysis and duality theory in general normed spaces, 
mostly infinite dimensional ones, are thoroughly discussed in the well-known 
reference [49]. Another comprehensive treatment of the topic is [159]. Du- 
ality theory has been also extended for nonconvex systems, see, e.g. [59, 601 
where the mathematical theory is motived by duality in natural phenomena with 
particular emphasis on mechanics. 

In this chapter, we review some basic notions and results on convex sets, 
convex functions and their properties as well as the duality theory. Detailed 
discussions and proofs of the stated results can be found in [49] or [159]. 

In the theory of convex analysis, it is convenient to consider functions that 
take on values on the extended real line E. Recall that a functional f : V + 
is said to be proper if f (v )  > -cc b'v E V and f (u)  < cx for some u  E V. 

2.1. CONVEX SETS AND CONVEX FUNCTIONS 
Let V be a linear space. 

DEFINITION 2 .1  A subset K C V is said to be convex if it has the property 

U , V  E K  ( I  - t ) u + t v  E Kb't E [O,l]. 

We see that if K  is convex and u, v  E K ,  then the line segment connecting u  
and v,  i.e, the set ( ( 1  - t )  u  + t  v : t  E [0, I ] ) ,  is contained in K. By an induc- 
tion argument, for any ul , . . . , u, E K and any nonnegative numbers tl  , . . . , t ,  
with C:='=, ti = 1,  we have C:=l tiui E K .  The expression C:=l tiui with 
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nonnegative numbers t l ,  . . . , tn satisfying Cy=2=1 ti = 1 is called a convex com- 
bination of the elements ul ,  . . . , u,. 

DEFINITION 2 . 2  Afunction f : V -+ is convex if 

for any u, v E V and t E (0, I )  for which the right hand side is meaningful, 
i.e., f (u )  and f ( v )  are not simultaneously infinite with opposite signs. 

DEFINITION 2.3 Let K be a convex set in V avtd f : K + R .  I f  

f ( v )  = { y; v E K,  
v w 

is convex, then we say f is convex on K. Thefunction f is strictly convex on K 
ifthe strict inequality in (2 .1)  holds for any u, v E K, u # v and t  E (0 , l ) .  

In the future, for a function f defined on a subset K c V, we identify it with 
its extension f introduced in Definition 2.3. In other words, we will use the 
same symbol f for both the function defined on K and its extension by oo to the 
complement of K in the space V. Thus, we will say that a function is convex 
over a subset K c V to mean that the extension of the function is convex in 
the space V. 

By an induction argument, i f f  is convex over a convex set K ,  then we have 

for any ul ,  . . . , u, E K and any nonnegative numbers t l ,  . . . , t ,  with 

The next result follows easily from the definition of a convex function. 

PROPOSITION 2.4 Let V be a linear space, A be an index set. Assume 

f ,  g ,  fa ( a  E A) : V + are convex. Then the functions f + g, t  f ( t  E 
(0, oo)), sup{ f ,  g )  and supaEA f a  are all convex. Here we let f ( v )  +g(v)  = oo 
i f f  ( v )  = -g(v) = &oo. 

In the study of convex functions, it is convenient to use the notions of the 
effective domain and the epigraph. 

DEFINITION 2 .5  Given afunction f : V -+ E, we dejne its effective domain 

dom ( f )  = {v E V : f ( v )  < oo} 
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and its epigraph 

e p i ( f )  = { ( v , a )  E V x R: f ( v )  5 a ) .  

It is easy to show that for a convex function the effective domain is a convex 
set in V and the epigraph is a convex set in V x R. 

From now on, we assume V is a normed space. 

DEFINITION 2.6 A function f : V -+ is said to be lower semicontinuous 
(1.s.c.) i f for any sequence {u,) C V with u, -+ u in V ,  

u )  < lim inf f (u,). 
f (  - n+m 

There is a useful characterization of the lower semicontinuity that provides 
an alternative definition of 1.s.c. in some references. 

PROPOSITION 2.7 Thefinction f : V -+ @ is 1.s.c. i f f for  any r E R the set 
{v  E V : f ( v )  5 r )  is closed. 

Later on, we will also need the notion of weak 1.s.c. 

DEFINITION 2.8 A function f : V -+ is said to be weakly lower semicon- 
tinuous (w. 1. s. c.) i f  for any sequence {u,) c V with u, - u in V ,  

U )  < lim inf f (u,). 
f (  - n-+m 

EXAMPLE 2 .9  Let K C V. The indicator function of the set K is defined by 

Then it can be verified that K is closed iff IK is l.s.c., whereas K is a convex 
set iff IK is a convex function. 

0 

For a set K in the normed space V, we use int K = in t (K)  = K to denote 
its interior, i.e. the set of the points in K such that each point is contained in 
an open ball that in turn lies in K. Roughly speaking, int K is the subset of K 
excluding the boundary points. Some of the boundary points may not belong 
to K ,  unless K is a closed set. We use K to denote the closure of K ,  i.e., the 
union of the set K and its boundary. 

The following results are not difficult to prove. 

PROPOSITION 2.10 Let f : V + E. Then 
(a) f is convex z f f  epi ( f ) is convex; 
(b) f is 1,s. c, ifSepi ( f  ) is closed; 
(c) f is continuous at u and f ( u )  # f cx ==+ int epi ( f  ) # 0; 
( 4  f $ +W ===+ epi ( f )  # 0: 
(e) f is convex =+ dom (f ) is convex. 
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2.2. HAHN-BANACH THEOREM AND SEPARATION 
OF CONVEX SETS 

The Hahn-Banach theorem and its corollaries are of central importance in 
functional analysis (cf. e.g. [48]). In this work, we only need Corollary 2.17 
given at the end of the section. For completeness, we state some related results 
and show how they lead to a proof of Corollary 2.17. 

DEFINITION 2 .11  A function p : V -+ R is sublinear i f  

We observe that p : V -+ R is a seminorm if it is sublinear and p( t  v )  = 
It/ p(v) for any v E V and any t E R. The analytic form of a general Hahn- 
Banach Theorem is the following. 

THEOREM 2.12 (Hahn-Banach Theorem) Let V be a real linear space, K C 
V a subspace. Assume f : K -+ R is linear and f (v) 5 p(v) for any v E K, 
with some sublinearfunctional p : V -+ R. Then f can be extended to a linear 
functional f : V -+ E% such that f (v) I p(v) for any v E V .  

Taking the functionp(.) to be a constant multiple of the norm, we immediately 
get the usual form of the Hahn-Banach Theorem. 

COROLLARY 2 . 1 3  Let V be a real Banach space, K c V be a subspace. 
Assume f : K -+ R is a linearfunctional satishing 

Then f can be extended to a continuous linearfunctional on V with 

There is a related geometric form of the Hahn-Banach theorem on separation 
of convex sets, Proposition 2.15. For this purpose, we introduce the following 
definition. 

DEFINITION 2 . 1 4  Let V be a real normed space, A, B c V be non-empty. 
The sets A and B are separated ifthere exist k' E V*,  k' # 0 and a E R such 
that 

q ~ )  I a 5 e ( ~ )  v u  E A, E B. 

The separation is strict if the inequalities can be replaced by strict inequalities 
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PROPOSITION 2.15 (Separation of convex sets) Let V bea real normedspace, 
A ,  B c V be non-empty and convex. 
(a) Zfint(A) n B = 0 and int(A) # 0, then A and B can be separated; fiuther- 
more, f ( u )  < a V u E int( A) .  
(b) I f A  f l  B = 8 and either A and B are open or A is closed and B is compact, 
then A and B can be strictly separated. 

LEMMA 2.16 Let V be a real normed space, f : V -+ be convex and 1.s.c. 
Suppose 

-cc < a < f ( u )  

for some u E d o m ( f )  (hence it is possible f ( u )  = co). Then 3 (u* ,  a )  E 
V* x R such that 

In particulal; iff ( u )  # i m ,  then 

f ( v )  > a + ( u * , v - U )  V v  E V, f ( v )  > -m. 

Proof. Every x* E (V x R)* has the form 

( z * ,  ( v ,  b))  = ( w * , v )  + a*b V ( v ,  b) E V x R, 

where w* E V * ,  a* E R.  Iff = co, then we choose u* = 0. Now assume f $ 
co. Then epi( f )  is convex, closed and non-empty. We have ( u ,  a )  $! epi( f ), 
and the set { ( u ,  a ) )  is convex and compact. By Proposition 2.15 (b), the sets 
{ ( u ,  a))  and epi(f) can be strictly separated in V x R. So 3 x* = (w*,  a*) E 
(V x R)* and p E R such that 

( w * , ~ )  + a*a > p > ( w * , v )  + a*b V ( v ,  b) E epi(f). 

Now for v E dom(f) with f ( v )  > - m ,  ( v ,  f ( v ) )  E epi(f). Hence 

Suppose a* 2 0. Then since u E dom( f )  , there is a sequence {v,) c dom( f )  
with v,  + u as n + co. Then 

( w * , u )  + a*a > /? > ( w * , v )  + a * f  ( u ) ,  

contradicting a < f ( u ) .  Thus we must have a* < 0 and therefore 

Then the inequality is valid for any v E V with f ( v )  > -m. rn 
A consequence of Lemma 2.16 is the following. 

COROLLARY 2 .17  Let V be a normed space, j : V -+ be propel; convex 
and 1.s.c. Assume u E dom ( j ) .  Then there exist u* E V *  and a E R such that 
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Figure 2.1. Continuity of a convex function 

2.3. CONTINUITY AND DIFFERENTIABILITY 
The purpose of this section is to list a few results on the continuity and 

differentiability of convex functions so that readers with little background on 
convex analysis can get familiar with basic properties of convex functions. 

Continuity. The basic result concerning the continuity of convex functions is 
the following. 

PROPOSITION 2.18 Let V be a real normed space, f : V -i be convex. 
(a) Assume f (u) E R. Then f is continuous at u i f f  is bounded from above 
in a neighborhood of u. 
(b) I f f  ifJinite on an open set M C V and is continuous at some point of M ,  
then f is continuous on M .  

Figure 2.1 shows a convex function f that is continuous in the interior of its 
effective domain, and is not continuous at b (f (x) = cc for x 2 b), a boundary 
point of the effective domain. Note that f is not bounded from above to the 
right of b. 

The next two results can be deduced from Proposition 2.18. 

COROLLARY 2.19 Let M C Rd be an open convex set. Then every convex 
function f : M -i R is continuous. 

COROLLARY 2.20 Let V be a real Banach space, M c V be closed and 
convex. Let f : M -+ R be convex and 1.s.c. Then f i f  continuous on int ( M ) .  

Subdifferential. The notion of subdifferential is useful in describing various 
mechanical laws arising in contact problems, plasticity, etc. Although in later 
chapters, we do not explicitly use the notion of subdifferential in deriving a 
posteriori error estimates, it is an important concept in convex analysis. Now 
we introduce the definition of subdifferential and subgradient. 
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Figure 2.2. Subdifferential of the absolute value function 

DEFINITION 2.21 Let V be a real normed space with the dual V*, and f : 
V -+ @. Let u  E V be such that f ( u )  # +oo. Then the subdifferential off  at 
u  is defined to be the set 

Any u* E df ( u )  is called a subgradient off at u. 

We see that if d  f ( u )  # 0, then f (v) > -cc for any v E V. 

EXAMPLE 2.22 For a real-valued real-variable function f : R -+ R, its sub- 
differential at u  E R is the set of the slopes of straight lines passing through 
the point (u ,  f ( u ) )  and lying below the curve of f .  For example, the absolute 
value function f ( u )  = lul is not differentiable at u  = 0, but is subdifferentiable 
there, and d f (0) = [- 1 ,  11 (Figure 2.2). 

On the other hand, differentiable functions may not be subdifferentiable. For 
instance, the smooth function f ( u )  = u3 is not subdifferentiable at u  = 0. The 
notion of the subdifferential is most suitable for convex functions. 

EXAMPLE 2.23 (Support functional) Let V be a real normed space, K c V 
be a convex set. Consider the subdifferential of the indicator function 

0 i f v ~ K ,  
+cc i fv  $! K. 

If u $! K ,  then dIK(u)  = 0. Assume u  E K. Then u* E dIK(u)  iff 

Thus we have the characterization 
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Any subgradient u* E dIK (u) is called a support functional to K at u. We 
always have 0 E dIK(u)  for u E K. It is easily seen that if u E int(K), then 
d IK(u)  = (0). For a boundary point u E d K  and the case int(K) # 0, by 
separating u and int(K), we can show the existence of a nonzero subgradient 
u* E dIK ( u )  If K is a subspace, then 

which can be viewed as the orthogonal complement of K. 

The following important result plays a central role in the duality theory. 

THEOREM 2.24 Assume V is a rejlexive Banach space, f : (-m, m ]  is con- 
vexand1.s.c. Thenv* E d f ( v )  i r v  € df*(v*).  

As is commented in Example 2.22, the notion of the subdifferential is mainly 
applied to convex functions. This is supported by the next result on the existence 
of subgradients. 

THEOREM 2 . 2  5 Let V be a real normed space, f : V + be convex. 
(a) For any v E V ,  d f (v) is convex and weak* closed. 
(b) Iff isjnite and continuous at v, then d f (v) # 0. 

Ordinary differentiation rules in calculus carry over to subdifferentials, either 
straightforwardly or with some additional assumptions. For example, it is easy 
to verify the following relations from the definition of the subdifferential. 

A natural question is when the equality holds for the summation rule. 

PROPOSITION 2.26 Let V be a real normed space, fi : V + ( - m ,  m ]  be 
convex for i = 1 , .  . . , n. Assume there is a uo E V such that f i(uo) E R, 
1 5 i 5 n, and fi, 1 5 i < n - 1, are continuous at uo. Then 

a( f1  + . . . + f n )  (v)  = a(f1) (v) + . - . + d(fn) (v) Vv E V. 

A proof of this result and that of the next Chain rule can be found in [49]. 

PROPOSITION 2.27  Let V and W be two real normed spaces, L : V -+ W 
be linear and continuous, f : W + R be convex and 1.s.c. Iff  is jni te  and 
continuous at some point, then 
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Relationship between subgradient and Giiteaux derivative. First, we recall 
the definitions of the directional derivative and GPteaux derivative. 

DEFINITION 2.28 Let f : V -+ and f ( u )  E R. For a v  E V ,  if 

exists, we call it the directional derivative off at u  in the direction v, and denote 
it by f l (u;  v) .  I f  there exists u* E V* such that 

then f is said to be GPteaux differentiable at u. The element u* is called the 
Gdteaux derivative off at u  and is denoted by f ' (u ) .  

Higher order derivatives are defined recursively. For instance, the second- 
order GPteaux derivative is defined to be the GPteaux derivative of the GPteaux 
derivative. 

PROPOSITION 2.29 Let V be a real normed space, f : V -+ be convex. 
Assume f ( u )  E R. 
(a) I f f  ' ( u )  exists as a Gdteaux derivative, then df ( u )  = { f ' ( u ) ) .  
(b) I f  f is continuous at u  and df ( u )  contains exactly one element, then f ' ( u )  
exists as a Gdteaux derivative. 

Proof. For any v  E V, we define a function d ( t )  = f ( u  + t (v  - u ) ) ,  t  E R. 
Then q5 is a convex function of the real variable t .  By the Mean Value Theorem, 

Since 4 is convex, @ ( O )  > $'(O). Then 

f ( v )  - f ( u )  2 ( u * , v - U )  'dv E V. 

Let v  = u  + t h, h E V, and let t -+ O+ to obtain 

Therefore, f ' ( u )  = u*. This completes a proof of part (a). 
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A proof of part (b) can be found in [49]. 

Characterization of convex functions. We can use the GBteaux derivative 
to characterize the convexity of a function. Let V be a normed space and 
f : V -+ R be GBteaux differentiable. Then the following three statements are 
equivalent. 
(a) f is convex. 
(b) f(4 2 f(u) + (fl(u),v - u) v u , v  E V .  
(c) (fl(v) - fl(u),v -u) 2 0 V u , v  E V. 

2.4. CONVEX OPTIMIZATION 
Given a space V, its subset K, and a functional f : K -+ R, we consider 

the problem 
inf f (v) . 

vEK 

When K is unbounded, we say the function f is coercive on K if 

f (v) -+ cc as iivll -+ a, v E K. 

We have a standard general result on the existence of a minimizer to the 
problem (2.2). 

THEOREM 2.30 Assume V is a reflexive Banach space, K c V convex and 
closed, and f : K -+ E% is convex and k c .  If either 
(a) K is bounded 
or 
(b) f is coercive on K,  
then the minimization problem (2.2) has a solution. Moreovel; iff is strictly 
convex on K,  then a solution of the minimization problem (2.2) is unique. 

This theorem will be applied later to show the existence and uniqueness of 
weak solutions to some nonlinear boundary value problems that are equivalent 
certain convex minimization problems. 

From the definition of subdifferential, immediately we get an extremal prin- 
ciple. 

PROPOSITION 2.31 Let V be a real normed space, f : V -+ be propel: 
Then u is a solution of infvEv f (v) i f0  E d f (u). 

THEOREM 2.32 Suppose V is a real normed space, K C V is a non-empty 
convex set. Assume f : K -+ R is convex. Then for u E K to be a solution of 
the problem 

inf f (v) 
vEK 
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a necessary and sufJicient condition is that u E V  is a solution of the uncon- 
strained optimization problem 

or u  E V satisfies the relation 

3 u* E V *  with (u*,  v  - u)  2 0 'v'v E K, such that 

f ( v ) 2  f ( u ) + ( u * , v - u )  Y v E V .  

The solution set is convex. I f f  is 1.s.c. and K is closed, then the solution set is 
closed. Every local minimum o f f  is also a global minimum. A minimizer o f f  
is unique i f f  is strictly convex. 

2.5. CONJUGATE FUNCTIONALS 
The idea of the duality theory can be described as follows: Let f be a given 

function on a normed space V .  For a minimization problem 

inf f ( v )  , 
vEV 

we look for a maximization problem 

such that 
inf f ( v )  = supg(q). 
V E V  ~ E Q  

The problem (2.3) is called the primal problem, and (2.4) is called the dual 
problem. Then we have the following two-sided bounds for the optimal value: 

This is the basis for deriving most of the a posteriori error estimates in this book. 
The space Q and the function g in the dual problem (2.4) are to be constructed 

from the primal problem (2.3). In particular, the construction of g is related to 
the concept of conjugate functionals. 

D E F I N I T I O N  2.33 Assume V  is a normed space, and let f : V + E. The 
conjugate functional f * : V*  + is dejined by the formula 

f * (v*)  = S U P [ ( V * ,  v )  - f ( v ) ]  v v* E V *  
v E V  
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Using the effective domain of the functional, we can also write 

f * ( v* )  = sup [ (v* ,  v )  - f ( v ) ]  Vv* E V * .  
v€dom(f)  

It follows from the definition that the conjugate functional f * is convex and 
1.s.c. on V * .  

We have the following generalized Young inequality: 

f * ( v* )  + f (4 2 ( v * , v ) ,  
f * ( v * ) +  f ( v ) = ( v * , v )  iff v * ~ d f ( v )  

for all v  E V ,  v* E V* as long as the expression f * ( v* )  + f ( v )  is meaningful, 
i.e., not of the form cc - w .  This inequality is a generalization of the usual 
Young inequality: 

where p  > 1 and p* is the conjugate exponent, defined through the equality 
l lp* + l l p  = 1. 

We will frequently need to calculate the conjugate functional for a functional 
defined by an integral of the form 

Before stating a theorem on how to calculate its conjugate function, we introduce 
the following notion. 

DEFINITION 2.34 Let R  be an open set of Rd, g : 0 x lR1 -+ R. We say g is 
a CarathCodory function if 
(a) 'i 6 E R1, x  H g ( x ,  5 )  is a measurable function; 
(b) for a.e. x  E R, < F+ g ( x ,  6 )  is a continuous function. 

Let there be given mi E (1,  a) ,  i = 1, . . . ,1 .  We have the following theorem 
which will be applied repeatedly in calculating conjugate functionals. 

THEOREM 2.35 Assume g : R x R1 -+ R is a Carathe'odoryfunction. For 

any q  E Q = ~~i ( R ) ,  dejine 

Then for the conjugate function of G, we have the formula 

G*(q*)  = g* ( x ,  q* ( x ) )  d z  Vq* E V * ,  
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EXAMPLE 2.36 Let Q be a domain in IRd, Q = ( L ~  (Q)) d .  We equate the 
dual space Q* with Q. Let us compute the conjugate of the functional 

By definition, 

I 
= sup / (q* . q - 2 lq2)  dx. 

Q E Q  n 

Applying Theorem 2.35, we have 

In later chapters, we will follow the above procedure to compute conjugate func- 
tional~ of similar kind, and we will not always state explicitly the application 
of Theorem 2.35. 

2.6. DUALITY THEORY 
We now introduce some basic results in the duality theory; detailed discussion 

and proofs of these results can be found in [49]. 
Let V and Q be two normed spaces, V* and Q* denote their dual spaces. 

The duality pairings in both V, V* and Q, Q* will be denoted by (., .). Assume 
there exists a linear continuous operator A E C(V, Q). The transpose A* E 
C(Q*, V*) of the operator A is defined through the relation 

(A*q*, v) = (q*, Av) V v E V, q* E Q* 

Let J be a function mapping V x Q into E. We consider the minimization 
problem (the primal problem) 

inf J (v ,  Av). 
u E V  

(2.5) 
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Define its dual problem by 

where J* : V *  x Q* -+ is the conjugate function of J :  

For the relation between problems (2.5) and (2.6), we have the following duality 
theorem. 

THEOREM 2.37 Assume the following conditions: 
(1)  V is a rejlexive Banach space and Q is a normed space; A E C(V,  Q).  
(2 )  J  : V x Q -+ IW is propel; lower semi-continuous and convex. 
(3) There exists uo E V such that J (uo ,  Auo) < cc and the mapping q e 

J (uo ,  q) from Q to IW is continuous at Auo. 
( 4 )  J ( v ,  Av) -+ +m as llvll -+ m, v E V .  

Then the problem (2.5) has a solution u E V ,  the problem ( 2 . 6 )  has a solution 
p* E Q*, and 

J ( u ,  Au) = - J* (A*p*, -p*). ( 2 . 8 )  

Furthermore, i f J ( v ,  Av) is strictly convex in its effective domain, then a solution 
u of the problem (2.5) is unique. 

It is possible to weaken the assumptions of Theorem 2.37, then a weaker 
conclusion holds. 

THEOREM 2.38 Assume: 
(1)  V and Q are normed spaces; A E L(V,  Q).  
(2 )  J  : V x Q -+ is convex. 
(3 )  There exists uo E V such that J (uo ,  Auo) < cc and the mapping q e 

J ( u o ,  q) from Q to IW is continuous at Auo. 
(4) infvEv J ( v ,  Av) is$nite. 

Then the problem ( 2 . 6 )  has a solution p* E Q* and 

inf J ( v ,  Av) = - J* (A*p*, -p*). 
vEV 

(2.9) 

Furthermore, i f J ( v ,  Av) is strictly convex in its effective domain, then a solution 
u ( i f i t  exists) of the problem (2.5) is unique. 

This theorem is of special interest where the primal minimization problem 
does not have a solution; one can study the primal problem through the dual 
problem. The two problems are connected by the equality (2.9) and note that 



Elements of convex analysis, duality theory 6 1 

the dual problem does have a solution. In the rest of this work, though, we do 
not need Theorem 2.38. 

We will often encounter the situation where the function J  is of a separated 
form, i.e., 

J (v ,q )  = F ( v )  + G M ,  v  E V ,  q  E Q.  (2.10) 

It is then usually more convenient to compute its conjugate as follows: 

J* (v* ,  q*) = F* ( v* )  + G* (q*) ,  

where F* and G* are the conjugate functions of F and G, respectively. This 
follows from the definition of the conjugate functional. Specializing Theorem 
2.37 to this case. we obtain the next result. 

THEOREM 2.39 Assume: 
( 1 )  V  is a rejkxive Banach space and Q is a normed space; A  E L(V,  Q) .  
( 2 )  F : V -+ E, G : Q Q E are propel; lower semi-continuous, convex 

functions. 
(3 )  There exists uo E V such that F ( u o )  < cc, G(Auo)  < cc and the 

mapping q  + G(q) is continuous at Auo. 
( 4 )  F ( v )  + G(Av)  -+ +cc as llvll -+ cc, v  E V .  

Denote J ( v , q )  = F ( v )  + G(q),  then J*(v*,qi)  = F*(v*)  + G*(q*). There 
is a solution u  E V to the problem (2.5), a solution p* E Q* to the problem 
(2.6), and (2.8) holds. Moreovel; if J ( v ,  Av) is strictly convex on its effective 
domain, then a solution u  of the problem (2.5) is unique. 

2.7. APPLICATIONS OF DUALITY THEORY IN A 
POSTERIORI ERROR ANALYSIS 

Let u E V be a solution of the minimization problem (2.5). For any v  E V ,  
we define the energy difference 

E D ( u ,  v) = J ( v ,  Av) - J ( u ,  Au).  (2.11) 

Let v  E V be any element with J ( v ,  Av) < cc. If the directional derivative 
J 1 ( ( u ,  Au);  ( v  - u ,  Av - Au))  exists, then we further define the quantity 

D(u ,  v )  = J ( v ,  Av) - J ( u ,  Au) - J1 ( (u ,  Au); ( v  - U ,  Av - Au)) .  (2.12) 

THEOREM 2.40 We make the same assumptions as in Theorem 2.37. Then 

E D ( u ,  v )  5 J ( v ,  Av) + J*(A*q*, -q*) V v  E V ,  q* E Q*. (2.13) 

Assume the directional derivative J1 ( (u ,  Au);  ( v  - u ,  Av - Au))  exists, then 
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and 
D(u ,  v )  < J ( v ,  Av) + J*(A*q*, -q*) Vq* E Q*. (2.15) 

Proof. The inequality (2.13) follows from the definition (2.1 I), the equality 
(2.8), and the definition of the dual problem (2.6): with p* a solution of the dual 
problem, 

E D ( u ,  v )  = J ( v ,  Av) + J* (A*p*, -p*) 

5 J (v ,Av )  + J*(A*q*, -q*) 

for any q* E Q*. 
Now assume the directional derivative J1 ( (u ,  Au); (v  - u ,  Av - Au))  exists. 

What remains to be proved is the inequality (2.14). Since u is a solution of the 
minimization problem (2.5), for any v E V we have the inequality 

Thus, 

Taking the limit t + 0+, we obtain 

J1 ( (u ,  Au);  ( v  - u ,  Av - Au))  2 0.  

Hence, (2.14) holds. H 
In the case J ( . ,  A*)  is Giteaux-differentiable at u,  we can replace (2.12) by 

D(u ,  v )  = J ( v ,  Av) - J ( u ,  Au) - ( J 1 ( u ,  Au) ,  ( v  - u ,  Av - Au) ) .  (2.16) 

where ( a ,  .) is the duality pairing between (V  x Q)* and V x Q. 
In most of the applications of Theorem 2.40 later in this work, J ( v ,  q) is of the 

separated form (2.10), F ( v )  is linear over its effective domain dom ( F )  c V ,  
and G : Q ?r IR is real-valued Giteaux-differentiable over Q. Obviously, 

dom ( F )  = dom J( . ,  A , ) .  

Suppose v E dom ( F ) .  Since F ( . )  is linear over dom ( F ) ,  it is easy to see that 

where G' denotes the Giteaux derivative, and (., .) is the duality pairing between 
Q* and Q. 

We now consider further the quantity D(u ,  v ) ,  starting with the expression 
(2.17). For this purpose, we recall two elementary formulas from Taylor's 
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theorem. Consider a real valued function f ( t ) ,  continuously differentiable for 
t  E [0, I ] .  Then 

1  

f (1)  - f (0)  = / f l @ )  dt. (2.18) 
0 

Iff ( t )  is twice continuously differentiable, then we can apply the above formula 
to f l ( t ) :  

and get 
r l  

f ( I )  - f (0)  - f ' ( 0 )  = J ( I  - t )  f " ( t )  dt. 
0 

Assume G(q) is continuously or twice continuously Gdteaux differentiable. For 
p, q  E Q ,  we apply (2.18) and (2.19) to the real variable function G(p+ t  (q -p) ) 
to get 

r l  

and 

respectively. Here, G1'(p + t  (q - p))  (q - p) is a mapping from Q to R , since 
the second order G2teaux derivative G1'(p + t (q - p))  is a mapping from Q to 
Q*. Then we have the formulas 

D(u,  v )  = (G1(Au + t (Av - Au))  - G1(Au) ,  Av - Au) dt, (2.20) i1 
1 

D(u,  V )  = 1 (1 - t )  (Gl1(Au + t (Av - Au))(Au - Au), Au - Au) dt, 

(2.21) 

for any u ,  v  E dom J ( . ,  A,) .  
We will mainly use the formula (2.21) later. In many situations, G is strongly 

convex in Q: for some constant a > 0, 
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In this case, from (2.21), we can conclude that 

a 
D(u ,  v )  2 - ( (Av  - A U I ~ ;  V u ,  v  E dom J ( - ,  A.) .  

2 
(2.23) 

EXAMPLE 2.41 We consider an example which will be useful for later chap- 
ters. Let R  be a domain in P S ~ .  Suppose A ( X )  = ( a i j ( ~ ) ) ~ ~ ~  is symmetric, 
bounded and uniformly positive definite: 

for some constant a > 0. Suppose A  is a linear continuous operator from 
H' ( R )  to Q = ( ~ ~ ( 0 ) ) ~ .  In such a situation, A  = V will be the gradient 
operator in later applications. Define the functional 

for q E ( ~ ~ ( 0 ) ) ~ .  In the following, we will usually omit the variable x  in 

integrands. Then for any p, q E (L2  (0))  d ,  

By (2.21), we have 

Since the matrix A ( x )  is uniformly positive definite in R, we have 

Therefore, the condition (2.22) is valid and we have the following lower bound 
from (2.23): 

In particular, for 
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and then 
1  

D(u ,  v )  = - ljhv - hull2 
2 ( L ~ ( R ) ) *  

for any u ,  v  E dom J ( - ,  A.). 

EXAMPLE 2.42 In Section 4.5, we have the situation with 

where p > 1, and f l  is a domain in TRd. Using the chain rule, we can find the 
GBteaux derivatives: 

By Cauchy-Schwarz inequality, ( p  - q ) 2  < I P 1 2 j q 1 2 .  Hence, 

And then, for u ,  v  E dom J ( . ,  As), a lower bound for D(u,  v )  could be 

Now if p 2 4, then 

2 ~ 1 2 - 2  ( l + l V u + t V ( v - u ) I  ) 2 1 

and a further lower bound for D(u ,  v )  could be 

This lower bound is not of desirable form, since the natural space for the solution 
u of the corresponding weak formulation (cf. Section 4.5) is wlJ'(fl). For 
p < 4, the expression (2.24) does not lead to a convenient form for a lower 
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bound. In such a situation, we will use directly the energy difference (2.11) to 
measure the difference between u and v. 

Armed with Theorem 2.40, the procedure of deriving an estimate for the 
difference between u and v is decomposed into two steps: 

STEP 1. Find a suitable lower bound for D(u, v) that measures the difference 
between u and v. Usually, this lower bound will be some quantity depending 
on llv - ull. We will use (2.23), (2.21) or (2.20) for this purpose. When it is not 
convenient to relate the lower bound with a norm-like quantity, we will directly 
use the energy difference ED(u, v) to measure the difference between u and 
v. 

STEP 2.  Construct an appropriate dual variable q* so that the bound from the 
right hand side of (2.13) or (2.15) is as accurate as possible. If q* is chosen to 
be a solution p* of the dual problem, then the right-hand side of the estimate 
attains its minimum. However, usually it is not easy to find p*. So it is desirable 
to have a strategy on determining a q* that is easy to get and that produces a 
good bound for the right-hand side of the estimate. The function q* is called 
a dual variable since it is related to the dual problem; it will also be called an 
auxiliary function. 

To use Theorem 2.40 for an error estimate, we will take u to be the solution 
of the original problem, v = uo the solution of an idealized problem or an ap- 
proximate problem. We will construct suitable auxiliary functions q* based on 
the information from the solution uo and the idealized or approximate problem 
to produce good estimates for the error (u - uo). 

As will be evident from the rest of the work, it is amazing that the above 
approach can be used to derive a posteriori error estimates in so many contexts. 




