

A POSTERIORI ERROR ANALYSIS VIA DUALITY THEORY

With Applications in Modeling and Numerical Approximations

Weimin Han

A POSTERIORI ERROR ANALYSIS VIA DUALITY THEORY

With Applications in Modeling and Numerical Approximations

Weimin Han

A POSTERIORI ERROR ANALYSIS VIA DUALITY THEORY

Advances in Mechanics and Mathematics

Volume 8

Series Editors:

David Y. Gao Virginia Polytechnic Institute and State University, U.S.A.

Ray W. Ogden University of Glasgow, U.K.

Advisory Editors:

I. Ekeland University of British Columbia, Canada

K.R. Rajagopal Texas A&M University, U.S.A.

T. Ratiu Ecole Polytechnique, Switzerland

W. Yang Tsinghua University, P.R. China

A POSTERIORI ERROR ANALYSIS VIA DUALITY THEORY

With Applications in Modeling and Numerical Approximations

by

WEIMIN HAN Department of Mathematics University of Iowa Iowa City, IA 52242, U.S.A.

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 0-387-23536-1 e-ISBN 0-387-23537-X Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11336112

springeronline.com

Contents

Lis	t of F	ïgures	vii
Lis	t of T	ables	xi
Pre	face		xv
1.	PRELIMINARIES		1
	1.1	Introduction	1
	1.2	Some basic notions from functional analysis	5
	1.3	Function spaces	7
	1.4	Weak formulation of boundary value problems	16
	1.5	Best constants in some Sobolev inequalities	20
	1.6	Singularities of elliptic problems on planar nonsmooth domains	25
	1.7	An introduction of elliptic variational inequalities	29
	1.8	Finite element method, error estimates	36
2.	ELEMENTS OF CONVEX ANALYSIS, DUALITY THEORY		47
	2.1	Convex sets and convex functions	47
	2.2	Hahn-Banach theorem and separation of convex sets	50
	2.3	Continuity and differentiability	52
	2.4	Convex optimization	56
	2.5	Conjugate functionals	57
	2.6	Duality theory	59
	2.7	Applications of duality theory in a posteriori error analysis	61
3.	A POSTERIORI ERROR ANALYSIS FOR		
	IDE	ALIZATIONS IN LINEAR PROBLEMS	67
	3.1	Coefficient idealization	68
	3.2	Right-hand side idealization	91

	2.2		100
	3.3	Boundary condition idealizations	100
	3.4	Domain idealizations	106
	3.5	Error estimates for material idealization of torsion problems	112
	3.6	Simplifications in some heat conduction problems	119
4.	A POSTERIORI ERROR ANALYSIS FOR LINEARIZATIONS		127
	4.1	Linearization of a nonlinear boundary value problem	127
	4.2	Linearization of a nonlinear elasticity problem	143
	4.3	Linearizations in heat conduction problems	160
	4.4	Nonlinear problems with small parameters	169
	4.5	A quasilinear problem	173
	4.6	Laminar stationary flow of a Bingham fluid	176
	4.7	Linearization in an obstacle problem	182
5.	A POSTERIORI ERROR ANALYSIS FOR SOME NUMERICAL		193
	5.1	A posteriori error analysis for regularization methods	193
	5.2	Kačanov method for nonlinear problems	203
	5.3	Kačanov method for a stationary conservation law	209
	5.4	Kačanov method for a quasi-Newtonian flow problem	219
	5.5	Application in solving an elastoplasticity problem	226
6.	ERROR ANALYSIS FOR VARIATIONAL INEQUALITIES OF THE SECOND KIND		235
	6.1	Model problem and its finite element approximation	237
	6.2	Dual formulation and a posteriori error estimation	243
	6.3	Residual-based error estimates for the model problem	248
	6.4	Gradient recovery-based error estimates for the model problem	255
	6.5	Numerical example on the model problem	262
	6.6	Application to a frictional contact problem	271
RE	FERE	ENCES	287
Inc	lex		301
			~~ ~ +

List of Figures

1.1	Numerical analysis of a physical problem	2
1.2	Smoothness of the boundary	10
1.3	Smooth domains	11
1.4	Lipschitz domains	11
1.5	A crack domain	11
1.6	A corner domain near the corner O	26
1.7	A finite element mesh	39
2.1	Continuity of a convex function	52
2.2	Subdifferential of the absolute value function	53
3.1	Choice of the auxiliary function near a corner domain: Subcase 2A	75
3.2	Choice of the auxiliary function near a corner domain: Subcase 2B	77
3.3	Domain idealization	109
4.1	One-dimensional stress-strain relation	131
4.2	Neighborhood around a corner	136
4.3	The function ϕ for numerical examples	153
4.4	Setting of a nonlinear elasticity problem	159
4.5	The working problem	159
5.1	Example 5.9, convergence of Kačanov iterates	219
5.2	Example 5.10, convergence of Kačanov iterates	220
6.1	Example 6.11, true solution	265
6.2	Example 6.11, initial partition and adaptively refined	266
63	Example 6.11 $\ u - u^{un}\ _{1,0}$ (1) vs $h^{1/2} \ \lambda - \lambda_{1}\ _{0,0}$ (1)	267
0.0		

6.4	Example 6.11, plots of $\lambda_{h,1}$	267
6.5	Example 6.11, plots of $\lambda_{h,2}$	268
6.6	Example 6.11, results based on residual type estimator, $\ u - u_h^{un}\ _{1,\Omega}$ (\Box) vs. $\ u - u_h^{ad}\ _{1,\Omega}$ (\triangle)	269
6.7	Example 6.11, results based on gradient recovery type estimator, $ u - u_b^{un} _{1,\Omega}$ (\Box) vs. $ u - u_b^{ad} _{1,\Omega}$ (\triangle)	269
6.8	Example 6.11, results based on residual type estimator, $ u - u_h^{un} _{1,\Omega}$ and η_R on uniform mesh (\Box) vs. $ u - u_h^{un} _{1,\Omega}$	
6.9	$u_h^{au} _{1,\Omega}$ and η_R on adapted mesh (Δ) Example 6.11, results based on gradient recovery type estimator, $ u - u_h^{un} _{1,\Omega}$ and η_G on uniform mesh (\Box)	270
(10	vs. $ u - u_h^{aa} _{1,\Omega}$ and η_G on adapted mesn (Δ)	270
6.10	Example 6.11, performance comparison between the	271
6 1 1	Example 6.12 physical setting	271
6.12	Example 6.12, physical setting Example 6.12, initial mash with 128 elements 81 nodes	274
6.12	Example 6.12, initial mesh with 126 elements, of nodes Example 6.12, $ a_1 - a_1^{un} $ (a) us $h^{1/2} \lambda = \lambda^{un} $	215
0.15	Example 0.12, $\ \boldsymbol{u} - \boldsymbol{u}_{h}^{-n}\ _{\boldsymbol{V}}$ (b) vs. $h^{-r} \ \boldsymbol{\lambda}_{h\tau} - \boldsymbol{\lambda}_{h\tau}\ _{0,\Gamma_{C}}$ (\wedge)	276
6.14	Example 6.12, plot of $\lambda_{h,1}$	276
6.15	Example 6.12, plot of $\lambda_{h,2}$	277
6.16	Example 6.12, results based on residual type estimator, deformed configuration 5583 elements, 2921 nodes	277
6.17	Example 6.12, results based on gradient recovery type estimator, deformed configuration with 5437 elements, 2832 nodes	278
6.18	Example 6.12 results based on residual type estimator	270
0110	$\ \boldsymbol{u} - \boldsymbol{u}_h^{un}\ _{\boldsymbol{V}}$ (D) VS. $\ \boldsymbol{u} - \boldsymbol{u}_h^{ad}\ _{\boldsymbol{V}}$ (\bigtriangleup)	278
6.19	Example 6.12, results based on gradient recovery type estimator, $\ \boldsymbol{u} - \boldsymbol{u}_h^{un}\ _V$ (\Box) vs. $\ \boldsymbol{u} - \boldsymbol{u}_h^{ad}\ _V$ (Δ)	279
6.20	Example 6.12, results based on residual type estimator, $\ u - u_h^{un}\ _V$ and η_R on uniform mesh (\Box) vs. $\ u - u_h^{ad}\ _V$ and v_P on adapted mesh (\triangle)	270
6.21	Example 6.12, results based on gradient recovery type estimator, $ \boldsymbol{u} - \boldsymbol{u}_h^{un} _V$ and η_G on uniform mesh (\Box) vs.	219
(00	$\ \boldsymbol{u} - \boldsymbol{u}_h^{aa}\ _V$ and η_G on adapted mesh (\triangle)	280
6.22	Example 6.13, physical setting	280
6.23	Example 6.13, initial mesh with 160 elements, 105 nodes	281
6.24	Example 6.13, results based on residual type estimator, deformed configuration with 5222 elements, 2755 nodes	281

6.25	Example 6.13, results based on gradient recovery type estimator, deformed configuration with 4964 elements,	
	2624 nodes	281
6.26	Example 6.13, plot of $\lambda_{h,1}$	282
6.27	Example 6.13, plot of $\lambda_{h,2}$	282
6.28	Example 6.13, results based on residual type estimator, $\ \boldsymbol{u} - \boldsymbol{u}_h^{un}\ _{\boldsymbol{V}}$ (\Box) vs. $\ \boldsymbol{u} - \boldsymbol{u}_h^{ad}\ _{\boldsymbol{V}}$ (\triangle)	283
6.29	Example 6.13, results based on gradient recovery type estimator, $\ \boldsymbol{u} - \boldsymbol{u}_h^{un}\ _{\boldsymbol{V}}$ (\square) vs. $\ \boldsymbol{u} - \boldsymbol{u}_h^{ad}\ _{\boldsymbol{V}}$ (\triangle)	283
6.30	Example 6.13, $\ \boldsymbol{u} - \boldsymbol{u}_h^{un}\ _{\boldsymbol{V}}$ (\Box) vs. $h^{1/2} \ \boldsymbol{\lambda}_{h\tau} - \boldsymbol{\lambda}_{h\tau}^{un}\ _{0,\Gamma_C}$ (\bigtriangleup)	284
6.31	Example 6.13, results based on residual type estimator, $\ \boldsymbol{u}-\boldsymbol{u}_h^{un}\ _{\boldsymbol{V}}$ and η_R on uniform mesh (\Box) vs. $\ \boldsymbol{u}-\boldsymbol{u}_h^{ad}\ _{\boldsymbol{V}}$ and η_R on adapted mesh (\bigtriangleup)	284
6.32	Example 6.13, results based on gradient recovery type estimator, $\ \boldsymbol{u} - \boldsymbol{u}_h^{un}\ _{\boldsymbol{V}}$ and η_G on uniform mesh (\Box) vs. $\ \boldsymbol{u} - \boldsymbol{u}_h^{ad}\ _{\boldsymbol{V}}$ and η_G on adapted mesh (\bigtriangleup)	285

List of Tables

3.1	Example 3.8, effectivity of error bound	89
3.2	Example 3.10, effectivity of error bounds	91
3.3	Example 3.12, smallest roots for several angles	98
4.1	Example 4.1, true errors and error bounds, $\lambda = 0.1$	140
4.2	Example 4.1, true errors and error bounds, $\lambda = 0.015$	140
4.3	Example 4.1, true errors and error bounds, $\lambda = 0.0101$	140
4.4	Example 4.2, error bounds for problems on an L-shape dor	nain142
4.5	Singular exponents	157
4.6	Example 4.11, error bounds for various parameters	160
4.7	Example 4.12, error bound for energy difference	177
4.8	Efficiency of error bounds on a one-dimensional obsta-	
	cle problem	192
5.1	Example 5.7, numerical results with $\alpha(s) = (2+s)/(1+$	015
	s), $\beta_0 = 7/8$	215
5.2	Example 5.7, numerical results with $\alpha(s) = (7+s)/(1+s)$	215
5 2	s), $p_0 = 1/4$ Example 5.7 numerical results with $\alpha(z) = (2 + z^2)/(1 + z^2)$	215
5.5	Example 5.7, numerical results with $\alpha(s) = (2+s^2)/(1+s^2)$, $\beta_0 = 7/16$	216
5.4	Example 5.8, numerical results with $\kappa = 0.20488$	217
5.5	Example 5.8, numerical results with $\kappa = 10^{-1}$	217
5.6	Example 5.8, numerical results with $\kappa = 10^{-2}$	217
5.7	Example 5.8, numerical results with $\kappa = 10^{-3}$	217
5.8	Example 5.8, numerical results with $\kappa = 10^{-4}$	218
5.9	Example 5.9, convergence of Kačanov iterates	218
5.10	Example 5.10, convergence of Kačanov iterates	220

226
226
263
268

Dedicated to

Daqing Han, Suzhen Qin Huidi Tang Elizabeth, Michael

Preface

This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear variational problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to measuring, controlling and minimizing errors in modeling and numerical approximations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc.

The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2. This brief review is sufficient for the applications of the duality theory in all the following chapters. In mathematical modeling of differential equation problems, usually assumptions are made on various data. Qualitatively, for many problems, it is known that the solution depends continuously on the problem data. Frequently though, it is desirable also to estimate or bound quantitatively the effect on the solutions of the problems caused by the adoption of the assumptions on the data. In Chapter 3, a posteriori error estimates are derived for the effect on the solutions of mathematical idealizations on the data of elliptic linear boundary value problems. In Chapter 4, a posteriori error estimates are given for linearization in a number of nonlinear boundary value problems. The last two chapters are devoted to a posteriori error analysis of numerical solutions. In Chapter 5, the regularization method and the Kačanov method are considered, both being useful in handling certain types of nonlinearity. In Chapter 6, a posteriori error estimates are derived and studied for finite element solutions of some elliptic variational inequalities.

This book is intended for researchers and graduate students in Applied and Computational Mathematics, and Engineering. Mathematical prerequisites include calculus, linear algebra, some exposures of differential equations, and concepts of normed spaces, Banach spaces and Hilbert spaces. In the theoretical development, some basic notions and results in functional analysis, duality thoery, weak formulations of boundary value problems, variational inequalities, and the finite element method are used. Brief reviews of these notions and