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Preface 
This work provides a posteriori error analysis for mathematical idealizations 

in modeling boundary value problems, especially those arising in mechanical 
applications, and for numerical approximations of numerous nonlinear varia- 
tional problems. An error estimate is called a posteriori if the computed solution 
is used in assessing its accuracy. A posteriori error estimation is central to mea- 
suring, controlling and minimizing errors in modeling and numerical approx- 
imations. In this book, the main mathematical tool for the developments of a 
posteriori error estimates is the duality theory of convex analysis, documented 
in the well-known book by Ekeland and Temam ([49]). The duality theory 
has been found useful in mathematical programming, mechanics, numerical 
analysis, etc. 

The book is divided into six chapters. The first chapter reviews some basic 
notions and results from functional analysis, boundary value problems, elliptic 
variational inequalities, and finite element approximations. The most relevant 
part of the duality theory and convex analysis is briefly reviewed in Chapter 2. 
This brief review is sufficient for the applications of the duality theory in all the 
following chapters. In mathematical modeling of differential equation prob- 
lems, usually assumptions are made on various data. Qualitatively, for many 
problems, it is known that the solution depends continuously on the problem 
data. Frequently though, it is desirable also to estimate or bound quantitatively 
the effect on the solutions of the problems caused by the adoption of the as- 
sumptions on the data. In Chapter 3, a posteriori error estimates are derived for 
the effect on the solutions of mathematical idealizations on the data of ellip- 
tic linear boundary value problems. In Chapter 4, a posteriori error estimates 
are given for linearization in a number of nonlinear boundary value problems. 
The last two chapters are devoted to a posteriori error analysis of numerical 
solutions. In Chapter 5, the regularization method and the KaEanov method 
are considered, both being useful in handling certain types of nonlinearity. In 
Chapter 6, a posteriori error estimates are derived and studied for finite element 
solutions of some elliptic variational inequalities. 

This book is intended for researchers and graduate students in Applied and 
Computational Mathematics, and Engineering. Mathematical prerequisites in- 
clude calculus, linear algebra, some exposures of differential equations, and 
concepts of normed spaces, Banach spaces and Hilbert spaces. In the theoreti- 
cal development, some basic notions and results in functional analysis, duality 
thoery, weak formulations of boundary value problems, variational inequali- 
ties, and the finite element method are used. Brief reviews of these notions and 


