
2
Stability

The industrial revolution in Europe followed the introduction of prime
movers, or self-driven machines. It was marked by the invention of ad-
vanced grain mills, furnaces, boilers, and the steam engine. These devices
could not be adequately regulated by hand, and so arose a new requirement
for automatic control systems. A variety of control devices was invented,
including float regulators, temperature regulators, pressure regulators, and
speed control devices. In the mid-1800s mathematics was first used to an-
alyze the stability of these feedback control systems. In 1840, G.B. Airy
discovered that an improper design of the feedback control loop leads to
wild oscillations. He was the first to discuss this instability of the con-
trol system by using differential equations [1]. Later, J.C. Maxwell in 1868
analyzed the stability of steam engine regulating devices then known as
governors [157]. His technique was to linearize the differential equations of
motion to find the characteristic equation of the system. He studied the
effect of the system parameters on stability and showed that the system is
stable if the roots of the characteristic equation have negative real parts.1

1Maxwell raised the mathematical question of whether a given polynomial of order
n and real coefficients has roots with negative real parts and if we could find a solution
that can be expressed solely in terms of the coefficients, thus avoiding the explicit com-
putations of the roots. He was not aware that the problem had already been solved in
1856 by Hermite [91]. In 1877, the applied mathematician E. J. Routh provided a nu-
merical technique for determining when a characteristic equation has stable roots [198].
Unaware of the work of Maxwell and Routh, A. B. Stodola posed the problem of deter-
mining the stability of the characteristic equation to A. Hurwitz [104] in 1895. Hurwitz
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The principal difficulty in studying DDEs lies in the transcendental char-
acter of the characteristic equation leading to an infinite number of complex
roots. A delay problem connected to the position control of mechanical de-
vices where the number of roots is finite is analyzed below. But, in general,
we need to solve the characteristic equation using numerical methods and
graphical tools. Often, we are interested in studying the bifurcation dia-
gram of the pulsating solutions in a finite domain of parameters. Then,
most of the difficulties of determining the complete spectrum can be set
aside, because only a few eigenvalues will contribute to the observed os-
cillations. In the next section, we analyze the characteristic equation of a
simple linear DDE and identify particular points where a change of stability
occurs.

2.1 The characteristic equation

We wish to determine all the solutions of a linear DDE such as Eq.(1.3).
Redefining the time variable as t → t/τ , Eq.(1.3) can be rewritten in a
simpler form as

dy

dt
= ay(t− 1), (2.1)

where

a ≡ kτ (2.2)

is our control parameter. Eq.(2.1) is linear which suggests trying an expo-
nential solution of the form

y = c exp(σt). (2.3)

Substituting (2.3) into Eq. (1.3) leads to an equation for the growth rate
σ, called the characteristic equation, given by

σ − a exp(−σ) = 0. (2.4)

Equation (2.4) is a transcendental equation and admits several roots.2 We
separate the case σ real and the case σ complex.

gave a solution in terms of determinants on the basis of the Hermite paper. Modern
proofs may be found in Uspenky [232].

2The solution of this equation is known in terms of the Lambert function W (x) that
satisfies the equation W (x) exp(W (x)) = x. The solution of Eq.(2.4) with a real then
is σ = W (a). In symbolic software packages such as Maple and MATLAB, W (x) is a
standard function now.
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FIGURE 2.1. The solutions of the characteristic equation. The full and broken
lines correspond to σ complex and σ real, respectively. Each σ exhibits the limit
σr → −∞ as |a| → 0. We note that all the σr are negative in the interval
−π/2 ≤ a ≤ 0 meaning stability of the zero solution. The two dots mark the
point where one σr changes sign.

2.1.1 Roots

1. σ is real. From Eq. (2.4), we have the implicit solution

a = σ exp(σ). (2.5)

Studying the function a = a(σ) given by (2.5), we find that σ is a single
positive root if a > 0 and that there exist two distinct negative roots if
ac < a < 0, where ac ≡ −e−1. If a = ac, we have a double root (σ = −1)
and, if a < ac, there exist no real roots. See Figure 2.1.
2. σ is complex. Substituting σ = σr + iσi into Eq. (2.4) and separating
real and imaginary parts, we obtain two equations for σr and σi given by

σr − a exp(−σr) cos(σi) = 0, (2.6)

σi + a exp(−σr) sin(σi) = 0. (2.7)

Eliminating the common coefficient a exp(−σr) leads to the following equa-
tion

cot(σi) = −σr
σi

(2.8)
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that contains no parameter. Using (2.8) and then (2.7), the solution can
be analyzed in parametric form as (σi is the parameter)

σr = −σi cot(σi), (2.9)

a = −σi exp(σr)
sin(σi)

. (2.10)

See Figure 2.1.
In summary, the solution of Eq. (2.1) can be described as a sum of

exponentials of the form

y =
X
n

cn exp(σnt) (2.11)

where the cn are unknown. The coefficients cn can be determined in terms
of the initial function y0(t) (−1 ≤ t < 0) using the Laplace transform
[21]. Practically, we wish to know if y → 0 as t → ∞ meaning that the
determination of the σn is good enough (Re(σn) < 0 for all n).

2.1.2 Hopf bifurcation point

At critical values of a, we note that σr = 0 but σi 6= 0. From Eqs. (2.6) and
(2.7) with σr = 0, we find the conditions cos(σi) = 0 and a = −σi/ sin(σi)
which imply

σi = ±π/2 + kπ and a = ∓σi (2.12)

where k ∈ Z. The two first points a = −π/2 and a = 3π/2 are indicated in
Figure 2.1.
For the logistic equation (1.23), we know that y = 1 is a steady-state so-

lution. We may investigate its stability with respect to small perturbations
by introducing the deviation

u = y − 1 (2.13)

into Eq. (1.23). We obtain the following equation for u,

du

dt
= −λ(1 + u)u(t− 1). (2.14)

We next assume that |u| is sufficiently small so that 1 + u ' 1. Equation
(2.14) then simplifies as

du

dt
= −λu(t− 1). (2.15)

Equation (2.15) is identical to Eq. (2.1) with y = u and a = −λ. Because
the zero solution is stable in the interval −π/2 < a < 0, we conclude that
y = 1 is stable if

0 < λ < π/2. (2.16)

The critical point λ = π/2 is a Hopf bifurcation point that leads to a branch
of periodic solutions (see Chapter 3).
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FIGURE 2.2. Position control. The position of mass M is sensed and a control
force Q is applied to push the mass into the desired position. The control PD
has proportional and differential gains (redrawn from [110]).

2.2 Position control and sampling

Position control is a frequent mechanical controlling problem in robotics.
The aim is to drive the robot arm into a desired position. To achieve a clear
picture about the behavior of the control, digital effects, such as sampling,
should also be included in the mechanical model. Sampling is a kind of
delay in information transmission that often leads to unstable oscillations.
Analytical investigations of simple models with one degree of freedom play
a central role in understanding technical phenomena and designing a safe
system. Another example of sampling is described in Chapter 5. Here, we
reproduce the analysis by Insperger and Stépán [110] of a simple position
control problem. Only the characteristic equation is modified in order to
use Hurwitz stability conditions.
Because of the digital sampling effect, the evolution equation is a DDE

but the stability problem can be reduced to a finite eigenvalue problem.
The system is described by (see Figure 2.2)

M
d2x

dt02
= Q, (2.17)

where prime means differentiation with respect to time t0. The sampling
time is τ. At each time t0 = nτ, the control force Q is quasi-instantaneously
readjusted in terms of the observed position x(tn) and observed velocity
dx(tn)/dt

0. The control law is

Q = −Px(tn)−D
dx

dt0
(tn), (2.18)

where P and D are positive coefficients. Introducing the dimensionless time

t = t0/τ, (2.19)

Eqs. (2.17) and (2.18) take the simpler form

x00 = −px(n)− dx0(n), (2.20)



32 2. Stability

where prime means differentiation with respect to time t. The dimensionless
parameters p and d are defined by

p =
Pτ2

M
and d =

Dτ

M
. (2.21)

Knowing position xn = x(n), velocity vn = x0(n), and acceleration an =
x00(n) ≡ −px(n)− dx0(n) at time t = n, we integrate Eq.(2.20) and obtain

x00 = an, (2.22)

x0 = vn + an(s− n), (2.23)

x = xn + vn(s− n) +
an
2
(s− n)2. (2.24)

Consequently, we determine xn+1 = x(n+1), vn+1 = x0(n+1), and an+1 =
x00(n+1) at time t = n+1. The resulting equations form a system of three
first-order difference equations of the form⎛⎝ xn+1

vn+1
an+1

⎞⎠ =

⎛⎝ 1 1 1
2

0 1 1
−p −d 0

⎞⎠⎛⎝ xn
vn
an

⎞⎠ . (2.25)

We wish to analyze the stability of the zero solution. To this end, we seek
a solution of the form

xn+1 = zxn, vn+1 = zvn and an+1 = zan, (2.26)

where z is called the amplification factor. Substituting (2.26) into (2.25),
we obtain the following homogeneous system of equations for xn, vn and
an, ⎛⎝ 1− z 1 1

2
0 1− z 1
−p −d −z

⎞⎠⎛⎝ xn
vn
an

⎞⎠ = 0. (2.27)

This system of equations has a nontrivial solution if the determinant of
the coefficients vanishes. Expanding the determinant as a polynomial in z
yields

z3 − 2z2 + z(1 +
p

2
+ d) +

p

2
− d = 0. (2.28)

This polynomial is known as the amplification polynomial. It is called stable
if all the roots lie on or inside the unit circle in the complex z plane:

|z1| ≤ 1, |z2| ≤ 1, |z3| < 1. (2.29)

We next transform Eq.(2.28) to a Hurwitz polynomial to apply a more
traditional stability test. A polynomial is called Hurwitz if the location of
its roots in the left-hand plane Re(s) ≤ 0 determines stability. To trans-
form Eq.(2.28) to a Hurwitz polynomial, we use the conformal involutory
transformation

z =
1 + s

1− s
. (2.30)
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FIGURE 2.3. Position control. The Hopf bifurcation line p = pH delimits the
region of stability.

Inserting (2.30) into (2.28), we obtain

s3(4 + 2d) + s2(4 + p− 4d) + s(−2p+ 2d) + p = 0. (2.31)

The Routh–Hurwitz stability conditions for the third-order polynomial

b3s
3 + b2s

2 + b1s+ b0 = 0 (2.32)

are given by
b1 > 0, b1b2 − b0b3 > 0 and b3 > 0. (2.33)

The last condition is always satisfied because d > 0. The first condition
requires that d > p and the second condition leads to the inequality

p2 + p(6− 4d) + 4d(d− 1) < 0, (2.34)

or equivalently,
0 ≤ p < pH = −3 + 2d+

√
9− 8d

because p ≥ 0. The critical point p = pH corresponds to a Hopf bifurca-
tion. This can be verified by substituting s = iω (ω 6= 0) into Eq. (2.32)
and separating the real and imaginary parts. We find the two conditions
−b3ω2 + b1 = 0 and −b2ω2 + b0 = 0, or equivalently,

b1b2 − b0b3 = 0 and ω2 = b1/b3 > 0. (2.35)

The first condition is verified by p = pH(d) and the second condition pro-
vides the square of the Hopf bifurcation frequency

ω2 =
pH

1− 2d+√9− 8d > 0. (2.36)

See Figure 2.3.
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FIGURE 2.4. Rail-mounted gantry cranes are used as yard cranes. Except for the
immediate loading or unloading tasks, all operations must be done automatically
with an efficient anti-sway control technique (from Erneux and Kalmár-Nagy
[60]).

2.3 Reduction of payload oscillations

Gantry cranes are used for moving objects within shipyards, ports, rai-
lyards, factories, and warehouses. See Figure 2.4. Gantry cranes can lift
several hundred tons and can have spans of well over 50 meters. For fab-
rication and freight-transfer applications, it is important for the crane to
move payloads rapidly and smoothly. If the gantry moves too fast the pay-
load may start to sway, and it is possible for the crane operator to lose
control of the payload. During the last four decades, different strategies of
controlling payload pendulations without including the operator in the con-
trol loop have been investigated. Recently, the question was raised whether
a delayed feedback control could be superior to conventional techniques.
Henry et al [90] and Masoud et al [154]—[156] developed a control strategy
based on a time-delayed position feedback of the payload cable angles. The
efficiency of this technique was investigated by both numerical simulations
of detailed mathematical models and by experiments in the laboratory
[90, 172]. In [60], we have analyzed the possible bifurcations of the crane—
payload system subject to a delayed control. We have shown that because
of subcritical bifurcations, stable time-periodic attractors may coexist with
a stable equilibrium. For safe control of the crane pendulations, such time-
periodic regimes should be avoided by using a physical model and finding
conditions for safe operation.
In [60], the model was derived using a Lagragian approach. In this sec-

tion, we consider a simpler model using Newtonian laws. The main forces
controlling the crane—payload system are displayed in Figure 2.5. We as-
sume that the cable is inextensible or its length is slowly varying compared
to the time-scale of the payload oscillations. The crane is assumed to ride
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FIGURE 2.5. Simplest pendulum model for a container crane.

on frictionless rails and the payload is assumed to rotate about a friction-
less pivot P . The force applied to the motor is F (t). The inertial force on
the crane is Mu00. The inertial force on the payload, in the horizontal di-
rection, is m(u00 + lθ00) and the gravity force on the payload is simply mg.
Balancing forces in the horizontal direction (ΣFx = 0) gives

Mu00 +m(u00 + lθ00) = F (2.37)

and balancing the moments about the pivot point P of the payload (ΣMP =
0) leads to

m(u00 + lθ00)l cos(θ) +mgl sin(θ) = 0. (2.38)

Using (2.37), we eliminate u in Eq. (2.38) and obtain

θ00 + tan(θ) + h(s) = 0, (2.39)

where prime means differentiation with respect to the dimensionless time
s ≡ ωt and ω is the crane—payload frequency defined by ω ≡p(M +m)g/(Ml).
The external force is h(s) ≡ F (s)/((M+m)g). Finally, we introduce a small
damping term (2μθ0) to take into account weak dissipation. Equation (2.39)
then becomes

θ00 + tan(θ) + 2μθ0 + h(s) = 0. (2.40)

We next propose a Pyrygas-type control [191] of the form h = k(θ(s −
τ)− θ). It has the advantage that the equilibrium point is not modified by
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the feedback. Linearizing Eq.(2.39) leads to

θ00 + 2μθ0 + θ+ k(θ(s− τ)− θ) = 0. (2.41)

The linear stability boundaries are found by introducing θ = exp(iσs) into
Eq.(2.41). From the real and imaginary parts, we obtain

−σ2 + 1+ k(cos(στ)− 1) = 0, (2.42)

2μσ − k sin(στ) = 0. (2.43)

The solution for k = k(τ) can be determined analytically. If we wish to
avoid the inverse trigonometric functions, we may obtain the solution in
parametric form using x ≡ στ/2 ≥ 0 as parameter. Eliminating k in
Eqs.(2.42) and (2.43), and inserting σ = 2x/τ , we obtain a quadratic equa-
tion for τ . It always admits a positive real root given by

τ = 2

∙
μx tan(x) + |x|

q
μ2 tan2(x) + 1

¸
. (2.44)

Having τ(x), we determine k using (2.43) with σ = 2xτ−1:

k =
4μx

τ sin(2x)
. (2.45)

By continuously increasing x from zero, the successive Hopf bifurcation
curves are generated by (2.44) and (2.45) (full lines in Figure 2.6). The
friction coefficient μ is generally small and if μ = 0, the expressions of the
Hopf bifurcation lines considerably simplify. From Eqs. (2.42) and (2.43),
we find the following three cases

k0 = 0 and σ0 = 1, (2.46)

τ0 = 2nπ and σ0 = 1, (2.47)

k0 =
1

2

∙
1− ((2n+ 1)π

τ
)2
¸

and σ0 =
(2n+ 1)π

τ
. (2.48)

where n = 0, 1, 2, .... The horizontal line k = 0, the vertical line defined by
(2.47) with n = 1, and the lines defined by (2.48) with n = 0 and 1 are
shown by broken lines in Figure 2.6.

2.4 Traffic stability

The control of traffic congestion problems is an important problem in our
society: where to install traffic lights or stop signs, how many lanes to build
for a new highway, should we develop alternate forms of transportation,
and so on. The desired goal is to achieve equilibrium and stability, but
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FIGURE 2.6. Successive Hopf bifurcation lines (solid) in the k versus τ parameter
plane for μ = 0.025. The broken lines correspond to the limiting case of no friction
(μ = 0) and are shown for the first four Hopf bifurcations. The crosshatched
domain corresponds to a stable steady state.

this is not always attained. In heavy traffic where drivers follow each other
very closely, an acceleration or deceleration of one vehicle may be a small
disturbance that will be preserved or amplified in the system over time,
suggesting that there can be sensitive dependence on initial conditions.
This is a potential problem for traffic management, and can even result in
accidents.

2.4.1 Car-following models

The starting point of a mathematical description of traffic flow problems
is an equation describing the conservation of cars (cars are not created or
destroyed). In one space dimension, this equation is a partial differential
equation given by [83, 238, 26]

ρt + qx = 0, (2.49)

where ρ(x, t) is the density of cars and q(x, t) represents the traffic flow (in
physics: the “flux” of ρ across a boundary). However, for traffic problems
where u is the average velocity of cars, q = ρu. We make the simplified as-
sumption that u depends only on the density of cars; that is, u = u(ρ). This
function can be determined experimentally (e.g., by counting the number of
cars passing per hour). It may also be determined by using simple models.
The motion of a line of vehicles on a crowded road link without overtaking
(a rash assumption) is described by a car-following model [33]. This model
is based on the assumption that a driver responds to the motion of the
vehicle immediately in front. In the simplest model, the acceleration on the
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following car is assumed to be proportional to the difference between its
speed and that of the car in front:

d2xn
dt2

= −λ(dxn
dt
− dxn−1

dt
). (2.50)

If the car following is going faster than the preceding one, then the car fol-
lowing will slow down (and thus λ > 0). The larger the relative velocity, the
more the car behind accelerates or decelerates. λ measures the sensitivity of
the two-car interaction. However, Eq. (2.50) suggests that acceleration or
deceleration occurs instantaneously. Instead, let us allow some time before
the driver reacts to changes in the relative velocity. The process is modeled
by specifying the acceleration at a slightly later time

d2xn(t+ τ)

dt2
= −λ(dxn

dt
− dxn−1

dt
), (2.51)

where τ is the reaction time. Mathematically, this equation is a DDE.
Integrating Eq. (2.51) once yields

dxn(t+ τ)

dt
= −λ(xn − xn−1) + dn, (2.52)

an equation relating the velocity of cars at a later time to the distance be-
tween cars. Imagine a steady-state situation in which all cars are equidistant
apart, and hence moving at the same velocity. Thus

dxn(t+ τ)

dt
=

dxn(t)

dt
, (2.53)

and hence letting dn = d

dxn(t)

dt
= −λ(xn − xn−1) + d. (2.54)

Because

xn−1 − xn =
1

ρ
(2.55)

is a reasonable definition of traffic density, this model yields a velocity—
density relationship

u =
λ

ρ
+ d. (2.56)

We choose the one arbitrary constant d such that at maximum density
(bumper-to-bumper traffic) u = 0. In other words

0 =
λ

ρmax
+ d. (2.57)
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FIGURE 2.7. The speed u as a function of the density ρ. The top figure shows
the hyperbolic function as predicted by the car-following model. In practice, the
maximum permitted speed u = umax is introduced (see bottom figure).

In this way the following velocity—density relationship is derived,

u = λ

µ
1

ρ
− 1

ρmax

¶
. (2.58)

See Figure 2.7. How does this compare with experimental observations of
velocity—density relationships? Equation (2.58) appears reasonable for large
densities, that is, near ρ = ρmax. However, it predicts an infinite velocity at
zero density. We can eliminate this problem by noting that this model is not
appropriate for small densities for the following reasons. At small densities,
the change of speed of a car is not due to the car in front. Instead it is more
likely that the speed limit influences a car’s velocity (and acceleration) at
small densities. Thus we may hypothesize that Eq. (2.58) is valid only for
large densities. For small densities, u is only limited by the speed limit
u = umax (see Figure 2.7).

2.4.2 Local and asymptotic stability

When the lead vehicle of a line of cars changes its motion, the response of
the following vehicle and the global response of all the cars in the line will
not be the same. In this section we address this question by considering
both the stability of two successive cars as well as the stability of a large
numbers of cars.
Equation (2.51) can be solved by the method of Laplace transform [93]

but the evaluation of the inverse Laplace transform may lead to a com-
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plex expression with little physical insight. In this section, we address the
stability of the linear car following Eq.(2.51) with respect to disturbances.
Two particular types of stabilities need to be examined, local stability and
asymptotic stability. Local stability is concerned with the response of the
following vehicle to a fluctuation in the motion of the vehicle directly in
front of it; that is, it concentrates on the localized behavior between pairs
of vehicles. Asymptotic stability is concerned with the manner in which a
fluctuation in the motion of any vehicle, say the lead vehicle of a platoon,
is propagated through a line of vehicles.

Local stability

From Eq.(2.51), we determine the equation for the velocity vn = dxn/dt
given by

dvn(t+ τ)

dt
= −λ(vn − vn−1). (2.59)

Consider the case of two cars traveling with equal speed u. Assuming that
the lead vehicle keeps its velocity, the following vehicle vn = u+ y satisfies

dy(t+ τ)

dt
= −λy, (2.60)

or equivalently,
dy

ds
= −λτy(s− 1), (2.61)

where s = t/τ + 1. Equation (2.61) was analyzed in Section 2.1. We know
that y does not exhibit any oscillations if

λτ ≤ e−1 ' 0.37 (2.62)

and that y is oscillatory with exponential damping if

e−1 < λτ < π/2 ' 1.57. (2.63)

In order for the following vehicle not to overcompensate for a fluctuation, it
is necessary that condition (2.62) be verified. The criterion of local stability
is often referred to this condition although the steady state is unstable only
if λτ > π/2.

Asymptotic stability

Now assume that the lead driver’s velocity varies periodically as

v0 = 1 +
1

2
(exp(iωt) + c.c) . (2.64)

Also assume that the nth driver’s velocity varies periodically

vn = 1+
1

2
(fn exp(iωt) + c.c) , (2.65)
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where fn measures the amplification or decay that occurs. Starting with
f0 = 1, we determine f1 as a function of f0,then f2 as a function of f1, and
so on. Iterating n times, the solution is given by

fn =
1£

1 + iω
λ exp(iωτ)

¤fn−1 = 1£
1 + iω

λ exp(iωτ)
¤n f0. (2.66)

Thus, the amplitude |fn|2 is computed as

|fn|2 =
1¡

1 + iω
λ exp(iωτ)

¢n 1¡
1− iω

λ exp(−iωτ)
¢n |f0|2

=

"
1¡

1 + ω2

λ2
− 2ω

λ sin(ωτ)
¢#n . (2.67)

We next wish that |fn|2 → 0 which means that

ω2

λ2
− 2ω

λ
sin(ωτ) > 0 or

ω

λ
−2 sin(ωτ) > 0 or

sin(ωτ)

ω
<
1

2λ
. (2.68)

The inequality holds for all ω if 3

λτ <
1

2
. (2.69)

We conclude that if the product of the sensitivity and the time lag is greater
than 0.5, it is possible for following cars to drive more erratically than the
leader. In this case, we say that the model predicts instability if λτ > 1

2 .
Note that the criterion for local stability (namely that no local oscillations
occur if λτ < e−1) also insures asymptotic stability.

2.5 Bistability

Recent experiments on polarization switching in lasers subject to optical
feedback [203] have motivated a simple analytical study of a first-order
DDE. The laser (here a vertical-cavity surface-emitting laser) is subject to
optical feedback from a distant mirror (see Chapter 7). As a result, the light
reinjected into the laser corresponds to the laser output at time t−τ where
τ = 2L/c. L = 20.2 cm being the distance laser-mirror and c = 3×108 m/s
the speed of light, we determine τ = 1.3 ns. Compared to the time-scale
of the laser (i.e., the photon lifetime τp ∼ 1 ps), this delay is large and we
may reasonably expect some impact on the laser response. The experiments

3We investigate the function λ = ω/2 sin(ωτ) and note that the limit ω small leads
to the stability limit.
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FIGURE 2.8. Top: Polarization mode-hopping. Bottom: Blow-up of the fast os-
cillatory jump transition between modes. The frequency f ∼ 450 MHz is close to
the inverse of the delay τ (from Sciamanna et al [203]).

indicate that the laser exhibits polarization mode hopping due to noise (i.e.,
spontaneous emission noise) with fast oscillatory jump transitions with a
period close to τ . See Figure 2.8. These transient oscillations are not specific
to the laser but have been found by numerically investigating the following
first-order DDE,

x0 = x− x3 + cx(t− τ) +
√
2Dξ(t) (2.70)

where ξ(t) is a Gaussian white noise of zero mean and unitary variance
and D is the noise level. Equation (2.70) has been analyzed by Tsimring
and Pikovsky [224] and Masoller [153] in the general context of a bistable
system subject to noise. Their studies motivated further experimental work
using a laser subject to a time-delayed optoelectronic feedback [101].
In this section, we illustrate the technique of linearization by examining

the stability of the steady states of Eq. (2.70) with D = 0. It admits the
following steady state-solutions

x = 0, (2.71)

x = x± ≡ ±
√
1 + c (c ≥ −1). (2.72)

From (2.72), we note that two non-zero steady states are branching from
the zero solution at c = −1. Introducing the deviation u = x−xs where xs
is either (2.71) or (2.72), and assuming u small, we obtain a linear DDE.
Looking then for exponential solutions leads to the following characteristic
equation for the growth rate σ,

σ = 1− 3x2s + c exp(−στ). (2.73)
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FIGURE 2.9. Stability diagram. The vertical line at c = −1 marks a steady bifur-
cation point from the zero to the non—zero steady state. The left curve connecting
(c, τ) = (−1, 1) corresponds to a Hopf bifurcation point from the zero intensity
steady state. The right curve starting at (c, τ ) = (−1, 1) represents a Hopf bi-
furcation from the non—zero steady state. The critical point (c, τ ) = (−1, 1) is a
degenerate Hopf bifurcation point characterized by a double zero eigenvalue.

As for Eq. (2.4), we examine this equation by first considering the case
σ real and then the case σ complex (σ = σr + iσi). In the first case,
we determine an implicit solution for c = c(σ) which can be analyzed.
In the second case, we formulate the parametric solution σr = σr(σiτ)
and c = c(σiτ) which may or may not be expressed in terms of analytical
functions.
If c < −1, xs = 0 is the only steady state. It may change stability at

a Hopf bifurcation provided τ is sufficiently large. Inserting σ = iσi into
(2.73) with xs = 0, we obtain

1− c cos(σiτ) = 0, (2.74)

σi + c sin(σiτ) = 0. (2.75)

Equivalently, we may formulate the parametric solution

c =
1

cos(s)
and τ = − s

tan(s)
, (2.76)

where s = σiτ . If c > −1, xs = 0 always admits a real positive σ and is
therefore unstable.
For the non—zero intensity steady-states xs = x±, a Hopf bifurcation is

possible. Inserting σ = iσi into (2.73), we now obtain

−2 + c(−3 + cos(σiτ)) = 0, (2.77)

σi + c sin(σiτ) = 0 (2.78)
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FIGURE 2.10. Top: slowly varying oscillations followed by a sudden jump to the
steady-state x = −2. Bottom: short time solution showing the initial conditions:
x = −2.45 (−τ < t < −2τ/3 and −τ/3 < t < 0) and x = 3 (−2τ/3 < t < −τ/3).
The values of the parameters are c = 3 and τ = 5.

from the real and imaginary parts. These conditions can be rewritten as

c = − 2

3− cos(s) and τ =
s(3− cos(s))
2 sin(s)

, (2.79)

where s = σiτ . Using (2.76) and (2.79), we may represent the Hopf bifur-
cation line in the (c, τ) stability diagram. See Figure 2.9. There are other
Hopf bifurcation lines (not shown) that appear at higher values of c or τ .
The critical point (c, τ) = (−1, 1) is a degenerate Hopf bifurcation point

because it corresponds to a double zero eigenvalue of the characteristic
equation. The possible solutions near this point have been analyzed in detail
by Redmond et al. [196] who derived a slow time second order differential
equation for the small amplitude solutions. They showed that stable time-
periodic solutions may coexist with stable steady states.

2.6 Metastability

The evolution to a long time steady-state solution can be oscillatory and
very slow. The numerical solution of Eq.(2.70) is shown in Figure 2.10
starting from a square wave initial profile. Figure 2.10 shows sustained
oscillations with a period close to the delay that disappear on the long
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FIGURE 2.11. Right: The oscillations are slowly changing until they suddenly
dissapear and are replaced by the stable steady state x = 1. Left: Initial oscilla-
tions showning the first two intervals between successive zeros. ε = 0.1 and the
initial function is x = 1 (0 ≤ t < 2/3), x = −1 (2/3 ≤ t < 0), and x(0) = 0.
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FIGURE 2.12. Progressive decrease of αn defined as the time interval between
two successive zeros of the solution. α0 = 1/3 and ε = 0.1.

time-scale. By tuning parameters, it is possible to observe the oscillations
for longer periods. The phenomenon has been called metastability.
This phenomenon can be analyzed in detail using the following DDE,

εx0 = −x+ f(x(t− 1)), (2.80)

where ε = τ−1, f(x) = −1 if x < 0, f(x) = 1 if x > 0, and f(0) = 0 [3]. The
numerical solution is shown in Figure 2.11. By constructing the solution in
successive time intervals, it is possible to formulate a map for the interval
αn between two successive zeros [81]. It is given by

αn+1 = αn + ε ln

∙
2− 2 exp(−ε−1αn) + exp(−ε−1)

2− exp(−ε−1(1− αn))

¸
(2.81)

which for small ε and α0 < 0.5 simplifies as

αn+1 − αn ' ε exp(−ε−1αn) (2.82)
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The map (2.81) and its approximation (2.82) are mathematically valid un-
til αn = O(ε). The different iterations of Eq. (2.82) are shown in Figure
2.12. The expression (2.82) clearly indicates that the rate of change is
ε exp(−ε−1) small. As noted in [81], this small rate of change results from
the fact that f(x(t − 1)) = ±1 for x ≷ 0. If f(x(t − 1)) = a < 0 and
b > 0 for x ≷ 0, and if |a| 6= b, the rate of change is O(ε). The behavior of
metastable patterns is further analyzed by Nizette [176] who formulated a
Ginzburg—Landau equation from a general class of DDEs.




