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Preface

This volume is a collection of 13 peer-reviewed chapters consisting of exposi-
tory/survey chapters and research articles on fractals. Many of these chapters were
presented at the second edition of the international conference “Fractals and Related
Fields,” held on Porquerolles Island, France, in June 2011. The success of this
event proved the dynamism of the mathematical activity in the numerous branches
connected to fractal geometry.

The selected chapters cover the following topics:

* Geometric measure theory

* Ergodic theory, dynamical systems

* Harmonic analysis

e Multifractal analysis

* Number theory

* Probability theory

The three surveys are written by famous experts in their respective fields. The

other chapters are either original contributions or accessible expositions of very
recent developments, also written by leaders in their respective domains.

This book naturally follows the previous one, “Recent Development in Fractals
and Related Fields” which was published after the first conference, “Fractals and
Related Fields.” It is intended for researchers and graduate students wishing to
discover new trends in fractal geometry.

Villetaneuse, France Julien Barral
Créteil Cedex, France Stéphane Seuret
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The Rauzy Gasket

Pierre Arnoux and Stépén Starosta

Abstract We define the Rauzy gasket as a subset of the standard two-dimensional
simplex associated with letter frequencies of ternary episturmian words. We prove
that the Rauzy gasket is homeomorphic to the usual Sierpiniski gasket (by a two-
dimensional generalization of the Minkowski ? function) and to the Apollonian
gasket (by a map which is smooth on the boundary of the simplex). We prove that
it is also homothetic to the invariant set of the fully subtractive algorithm, hence of
measure (.

1 Introduction

Strict episturmian ternary words, also called Arnoux—Rauzy words, are a natural
generalization of Sturmian words (see Sect. 2 for the definitions). Each such word
is uniquely ergodic, and in particular, its letters have a well-defined frequency; one
can prove that these frequencies completely define the minimal symbolic system
associated with such a word.

These dynamical systems are associated with a particular family of interval
exchange transformations (see [1]). It is known that some of these systems (in
particular those defined by a substitution) can be represented by a toral rotation,
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