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Preface

In the last years, notable progresses were obtained in mathematical theory of sta-
bilization of equilibrium solution to Newtonian fluid flows as a principal tool to
eliminate or attenuate the turbulence. One of the main results obtained in this direc-
tion is that the equilibrium solutions to Navier–Stokes equations are exponentially
stabilizable by finite-dimensional feedback controllers with support in the interior
of the domain or on the boundary. This book was completed in the idea to present
these new results and techniques which are in our opinion the core of a discipline
still in development and from which one might expect in the future some spectacular
achievements.

Beside internal and boundary stabilization of Navier–Stokes equations, the sto-
chastic stabilization and robustness of stabilizable feedbacks are also discussed. We
had in mind a rigorous mathematical treatment of the stabilization problem, which
relies on some advanced results and techniques involving the theory of Navier–
Stokes equations and functional analysis as well. We tried to answer to the following
questions: which is the structure of the stabilizing feedback controller and how can
be designed by using a minimal set of eigenfunctions of the Stokes–Oseen opera-
tor. Though most of the feedback controllers constructed here are conceptual and
their practical implementation requires a computational effort which still remains
to be done, the analysis developed here provides a rigorous pattern for the design
of efficient stabilizable feedback controllers in most specific problems of practical
interest. To this purpose, the exposition is in mathematical style: definitions, hy-
potheses, theorems, proof. It should be emphasized that no rigorous stabilization
theory with internal or boundary controllers is possible without unique continuation
theory for the solutions to Stokes–Oseen equations.

By including a preparatory chapter on infinite-dimensional differential equations
and a few appendices pertaining unique continuation properties of eigenfunctions of
the Stokes–Oseen operator and stochastic processes, we have attempted to make this
work essentially self-contained and so, accessible to a broad spectrum of readers.
What is assumed of the reader is a knowledge of basic results in linear functional
analysis, linear algebra, probability theory and general variational theory of elliptic,
parabolic and Navier–Stokes equations, most of these being reviewed in Chap. 1
and in Sects. 3.8 and 4.5. An important part of the material included in this book

v



vi Preface

represent the personal contribution of the author and his coworkers and, though we
mentioned the basic references and a brief presentation of other significant works
in this field, we did not present them, however, in details. In fact, the presentation
was confined to the stabilization techniques based on the spectral decomposition of
the linearized system in stable and unstable systems and so we have omitted other
important results in literature.

The author is indebted to Cătălin Lefter who made pertinent observations and
suggestions. I also thank Irena Lasiecka and Roberto Triggiani for useful discus-
sions on several results presented in this book. Also, I am indebted to Mrs. Elena
Mocanu from Institute of Mathematics in Iaşi who prepared this text for printing.

I wish to express my thanks to Professor Miroslav Krstic, from University of
California, San Diego, for the invitation to write this book for the Springer series
Communication and Control Engineering he is coordinating.

Special thanks are due to Mr. Oliver Jackson, Editor of Engineering at Springer,
for understanding and assistance in the elaboration of this work.
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Chapter 1
Preliminaries

The purpose of this chapter is to briefly present without proofs, for later use, cer-
tain notions and fundamental results pertaining linear operators in Banach spaces,
boundary value problems, nonlinear dynamics in Hilbert spaces and existence the-
ory of Navier–Stokes equations.

1.1 Banach Spaces and Linear Operators

A Banach space is a linear normed space which is complete. The norm of the Banach
space X (real or complex) is denoted by ‖ · ‖X and L(X,X) is the space of all linear
continuous operators from X to itself. If X is a real Banach space (that is, over
the real field R), then its complexification ˜X is the space ˜X = X + iX, that is,
˜X = {x + iy, x, y ∈X} with the norm ‖x + iy‖ = ‖x‖X + ‖y‖X .

If A is a linear operator from X to Y , we denote by D(A) its domain, that is,
D(A)= {x ∈X; Ax 
= ∅} and by R(A) its range, that is, R(A)= {y ∈ Y ; y =Ax,
x ∈D(A)}. The linear operator is said to be closed if its graph {(x, y) ∈X×Y ; y =
Ax} is closed, that is, if xn

X−→ x and yn ∈ Axn
Y−→ y implies that y = Ax. Here

we use the symbol
X−→ for the convergence in the norm ‖ · ‖X , that is, the strong

convergence. The linear operator A is said to be densely defined if its domain D(A)

is dense in X. The inverse of A is denoted A−1.
For each λ ∈ C (the complex field) denote by (λI −A)−1 ∈ L(X,X) the resol-

vent of A : D(A) ⊂ X → X and by ρ(A) the resolvent set, ρ(A) =
{λ ∈ C; (λI − A)−1 ∈ L(X,X)} and by σ(A) = C \ ρ(A) the spectrum of A.
In each component of ρ(A) the function λ→ (λI −A)−1 is holomorphic.

The number λ ∈ C is said to be eigenvalue of the linear operator A : D(A) ⊂
X→X if there is x ∈D(A), x 
= 0, such that Ax = λx.

The corresponding vectors x are called eigenvectors. If λ is eigenvalue for A,
then the dimension of the linear eigenvector space Ker(λI−A)= {x ∈X;Ax = λx}
is called the geometric multiplicity of λ. The vector x is called a generalized eigen-
vector corresponding to the eigenvalue λ if (λI −A)mx = 0 for some m ∈N. The

V. Barbu, Stabilization of Navier–Stokes Flows,
Communications and Control Engineering,
DOI 10.1007/978-0-85729-043-4_1, © Springer-Verlag London Limited 2011
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2 1 Preliminaries

dimension of the space of generalized eigenvectors is called the algebraic multiplic-
ity of the eigenvalue λ.

Theorem 1.1 is known in literature as the Riesz–Schauder–Fredholm theorem.
(See, e.g., [82], p. 283.)

Theorem 1.1 Let T ∈ L(X,X) be a compact operator. Then its spectrum σ(T )

consists of an at most countable set of points of complex plane which has no point
of accumulation except λ= 0. Moreover, every λ ∈ σ(T ) is eigenvalue of T of finite
algebraic multiplicity.

In particular, by Theorem 1.1 we have the following result.

Theorem 1.2 Let A be a closed operator and densely defined operator in X with
compact resolvent (λI −A)−1 for some λ ∈ ρ(A). Then the spectrum σ(T ) consists
of isolated eigenvalues {λj }∞j=1 each of finite (algebraic) multiplicity mj .

If A is such an operator, then for each N ∈ N, the spectrum σ(A) can be writ-
ten as

σ(A)= {λj }Nj=1 ∪ {λj }N+1
j=1 (1.1)

and if Γ is a closed curve in C, which contains in interior {λj }Nj=1, we set

PN = 1

2πi

∫

Γ

(λI −A)−1dλ (1.2)

and X1
N = PNX, X2

N = (I − PN)X. Then we have a decomposition of X in the
direct sum

X =X1
N ⊕X2

N, P 2
N = PN, (1.3)

and if we set

A1
N = PNA, A2

N = (I − PN)A, (1.4)

we have the following theorem (see Theorem 6.17 in [59]).

Theorem 1.3 Under the assumptions of Theorem 1.2,

Ai
NXi

N ⊂Xi
N, i = 1,2, (1.5)

σ(Ai
N)= {λj }Nj=1, σ (A2

N)= {λj }∞j=N+1. (1.6)

If N = 1, then dimX1
N =m1 is just the algebraic multiplicity of the eigenvalue λ1.

Definition 1.1 An eigenvalue λ of the operator A is called semisimple if the alge-
braic multiplicity of λ coincides with the geometric multiplicity.

In general, the algebraic multiplicity is greater than the geometric multiplicity.



1.2 Sobolev Spaces and Elliptic Boundary Value Problems 3

We note that in finite dimension the spectrum of an operator consists of semi-
simple eigenvalues if its Jordan form is diagonal.

If X is a Banach space, we denote by X∗ its dual space endowed with the dual
norm ‖x∗‖X∗ = sup(X(x, x∗)X∗; ‖x‖X = 1}. (Here, X(x, x∗)X∗ is the value of x∗
at x.)

If A :X→ Y is a closed and densely defined operator (X,Y are Banach spaces),
then the adjoint A∗ : Y ∗ →X∗ of A is defined by

X∗(A∗y∗, x)X = Y ∗(y∗,Ax)Y , ∀x ∈D(A),

D(A∗)= {y∗ ∈ Y ∗; ∃C > 0, |Y ∗(y∗,Ax)Y | ≤ C‖x‖X, ∀x ∈D(A)}.
The adjoint operator A∗ is closed, densely defined and (λI − A∗)−1 = ((λI −
A)−1)∗, ∀λ ∈ ρ(A). Moreover, if λ is eigenvalue for A, then λ is eigenvalue for
A∗ of the same multiplicity.

If A is a closed and densely defined operator from X to X, its domain D(A)

is a Banach space with the norm ‖x‖D(A) = ‖x‖X + ‖Ax‖X , ∀x ∈ D(A), and we
have D(A)⊂X algebraically and topologically, that is, with dense and continuous
embedding.

Assume now that X = H is a Hilbert space with the norm ‖ · ‖H and scalar
product (·, ·)H and that there is λ0 ∈ ρ(A). Then, define the space (D(A))′ (the dual
of D(A) in the pairing (·, ·)) as the completion of H in the norm

‖x‖(D(A))′ = ‖(λ0I −A)−1x‖H , ∀x ∈H. (1.7)

Then, we have

D(A)⊂H ⊂ (D(A))′ (1.8)

algebraically and topologically. Moreover, the operator A :D(A)⊂H →H has an
extension denoted ˜A :H → (D(A∗))′ defined by

(D(A∗))′(˜Ax,y)D(A∗) = (x,A∗y), ∀y ∈D(A∗). (1.9)

Of course, we have ˜Ax =Ax, ∀x ∈D(A).
Moreover, since ˜A :H → (D(A∗))′ is closed, by the closed graph theorem (see,

e.g., [82], p. 77) we have that ˜A ∈ L(H, (D(A∗))′).
In applications to partial differential equations, the extension ˜A of A incorporates

into its domain D(˜A)=H boundary value conditions. (See an example in Sect. 1.2
below.)

1.2 Sobolev Spaces and Elliptic Boundary Value Problems

Throughout this section, until further notice, we assume that O is an open subset
of Rd . To begin with, let us briefly recall the notion of distribution. Let f = f (x)

be a continuous complex-valued function on O . By the support of f , abbreviated
suppf , we mean the closure of the set {x ∈ O; f (x) 
= 0} or, equivalently, the
smallest closed set of O outside of which f vanishes identically. We will denote



4 1 Preliminaries

by Ck(O), 0≤ k ≤∞, the set of all complex-valued functions defined in O which
have continuous partial derivatives of order up to and including k (of any order <∞
if k =∞).

Let Ck
0 (O) denote the set of all functions ϕ ∈ Ck(O) with compact support in O .

We may introduce in C∞
0 (O) a convergence as follows. We say that the sequence

{ϕk} ⊂ C∞
0 (O) is convergent to ϕ, denoted ϕk ⇒ ϕ, if

(a) There is a compact K ⊂O such that suppϕk ⊂K for all k = 1, . . . .

(b) limk→∞Dαϕk =Dαϕ uniformly on K for all α = (α1, . . . , αn).

Here, Dα =Dα
x1
· · ·Dαn

xN
, Dxi

= ∂
∂xi

, i = 1, . . . , n. Equipped in this way, the space
C∞

0 (O) is denoted by D(O). As a matter of fact, D(O) can be redefined as a locally
convex, linear topological space with a suitable chosen family of seminorms.

A linear continuous functional u on D(O) is called a distribution on O .
The set of all distributions on O is a linear space, denoted by D ′(O).
The distribution is a natural extension of the notion of locally summable function

on O . Indeed, if f ∈ L1
loc(O), then the linear functional uf on C∞

0 (O) defined by

uf (ϕ)=
∫

O
f (x)ϕ(x)dx, ∀ϕ ∈ C∞

0 (O)

is a distribution on O , that is, uf ∈D ′(O).
Given u ∈ D ′(O), by definition, the derivative of order α = (α1, . . . , αn), Dαu,

of u, is the distribution

(Dαu)(ϕ)= (−1)|α|u(Dαϕ), ∀ϕ ∈D(O), where |α| = α1 + · · · + αn.

Let O be an open subset of Rd and let m be a positive integer. Denote by Hm(O)

the set of all real-valued functions u ∈ L2(O) such that distributional derivatives
Dαu of u of order |α| ≤m all belong to L2(O). In other words,

Hm(O)= {u ∈ L2(O); Dαu ∈ L2(O), |α| ≤m}. (1.10)

We present below a few basic properties of Sobolev spaces and refer to the books
of Brezis [36], Adams [3], Barbu [11] for proofs.

Proposition 1.1 Hm(O) is a Hilbert space with the scalar product

〈u,v〉m =
∑

|α|≤m

∫

O
Dαu(x)Dαv(x) dx, ∀u,v ∈Hm(O). (1.11)

If O = (a, b), −∞ < a < b <∞, H 1(O) reduces to a subspace of absolutely
continuous functions on the interval [a, b].

More generally, for an integer m ≥ 1 and 1 ≤ p ≤∞, one defines the Sobolev
space

Wm,p(O)= {u ∈ Lp(O); Dαu ∈ Lp(O), |α| ≤m} (1.12)

with the norm

‖u‖m,p =
⎛

⎝

∑

|α|≤m

∫

O
|Dαu(x)|pdx

⎞

⎠

1/p

. (1.13)


