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Preface

The present monograph is devoted to nonlinear dynamics of thin plates and shells

with termosensitive excitation. Since the investigated mathematical models are of

different sizes (two- and three-dimensional differential equation) and different types

(differential equations of hyperbolic and parabolic types with respect to spatial coor-

dinates), there is no hope to solve them analytically. On the other hand, the proposed

mathematical models and the proposed methods of their solutions allow to achieve

more accurate approximation to the real processes exhibited by dynamics of shell

(plate) - type structures with thermosensitive excitation. Furthermore, in this mono-

graph an emphasis is put into a rigorous mathematical treatment of the obtained

differential equations, since it helps efficiently in further developing of various suit-

able numerical algorithms to solve the stated problems.

It is well known that designing and constructing high technology electronic de-

vices, industrial facilities, flying objects, embedded into a temperature field is of

particular importance. Engineers working in various industrial branches, and partic-

ularly in civil, electronic and electrotechnic engineering are focused on a study of

stress-strain states of plates and shells with various (sometimes hybrid types) damp-

ing along their contour, with both mechanical and temperature excitations, with

a simultaneous account of heat sources influence and various temperature condi-

tions. Very often heat processes decide on stability and durability of the mentioned

objects. Since numerous empirical measurement of heat processes are rather ex-

pensive, therefore the advanced precise and economical numerical approaches are

highly required.

A brief monograph description follows. Chapter 1 of this monograph is devoted

to a study of three-dimensional problems of theory of plates in a temperature field.

First, a brief historical outline as well as a state-of-art of the mentioned problems is

described in introductional section. In Section 1.2, the system of differential equa-

tions governing a broad class of problems in the coupled dynamic theory of ther-

moelasticity in three-dimensional formulation is derived. A difference variational

approximation is given and the difference scheme error is derived. Also stability of

an explicit difference scheme is rigorously studied.

Section 1.3 includes a comparison of solving systems governed by either hyper-

bolic or elliptic equations through various iterative methods.
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In section 1.4 numerous results of solutions of broad class of elasticity and ther-

moelasticity problems including coupling of temperature and deformations, are il-

lustrated and discussed.

In Chapter 2, after a brief historical research review, the variational equations

for shallow anisotropic shells embedded into a temperature are derived. Coupling

conditions and stress-strain state of shallow shells are formulated. In section 2.2

universality and efficiency of finite difference method devoted to boundary value

problems for elliptic equations if outlined. Difference schemes for series of multi-

dimensional stationary heat transfer equations are proposed in both sections 2.2 and

2.3. In the last section 2.4, influence of heat sources on a shell stress-strain and its

stability is studied.

Chapter 3 is devoted to analysis of dynamical behaviour and stability of closed

cylindrical shells subject to continuous thermal load. A brief historical background

is followed by variational formulation of the coupled dynamical problem of ther-

moelasticity. Hybrid-type variational equations of thin conical composite orthotropic

thermosensitive shells are derived, and a problem of their solution is rigorously dis-

cussed. Furthermore, a solution to the biharmonic equation in relation to forcing

function, as well as reliability of the obtained results, are addressed. Dynamical sta-

bility loss and non-uniform thermal loading are also studied.

Dynamical behaviour and stability of rectangular shells is addressed in Chapter

4. In section 4.1, the computational algorithm to analyse differential equations with

the associated boundary conditions is derived. The associated finite difference equa-

tions are given, and reliability of the results are verified. Stationary state method to

analyse statical and dynamical problems is illustrated in section 4.1.4. Various vibra-

tional phenomena and stability loss are studied. Stability of thin shallow shells with

both transversal and heat loads are examined in section 4.2. Section 4.3 is devoted

to stability of thin conical shells subject to both longitudinal load and heat flow.

Finally, dynamical stability of flexurable conical shells with convection is studied in

section 4.4.

In Chapter 5 dynamics and stability of flexurable sectorial shells with thermal

loads are addressed. First, theory of flexurable sectorial shells is introduced. The

fundamental relations are assumed, differential equations are derived and initial con-

ditions are given. After introduction of a thermal field the numerical “set-up” tech-

nique is illustrated and discussed, and numerical results reliability is outlined. Then

various examples of stability of sectorial shells with finite deflections are studied. In

addition, chaotic dynamics of sectorial shells and its control is addressed.

Chapter 6 is devoted to a study of coupled problems of thin shallow shells in tem-

perature field within the Kirchhoff-Love kinematic model. Fundamental assump-

tions and relations are introduced, and the differential equations are derived. The

finite difference model of a solution to three dimensional heat conductivity equation

is formulated. Numerical algorithm to solve the obtained equations is proposed, and

then numerous examples of investigation of stability loss of shallow rectangular

shells follow. Additional original method to solve a coupled thermoelastic problem

is also proposed.
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In chapter 7 a novel optimal and exact method of solving large systems of linear

algebraic equations. In the approach under consideration the solution of a system of

algebraic linear equations is found as a point of intersection of hyperplanes, which

needs a minimal amount of computer operating storage. The proposed method

makes it possible to benefit from the essential advantages of both the direct method

(universality, finitness of a computational process, exactness) and the iterational one

(minimal amount of operational storage). Two examples are given. In the first ex-

ample, the boundary value problem for a three-dimensional stationary heat transfer

equation in a parallelepiped in R3 is considered, where boundary value problems of

the 1st, 2nd or 3rd order, or their combinations are taken into account. The govern-

ing differential equations are reduced to algebraic ones with the help of the finite

element and the boundary element methods for different meshes applied. The ob-

tained results are compared with known analytical solutions. The second example

concerns computation of a non-homogeneous shallow physically and geometrically

non-linear shell subject to transversal uniformly distributed load. The partial differ-

ential equations are reduced to a system of non-linear algebraic equations with the

error of O(h2
x1
+ h2

x2
). The linearization process is realized through either Newton

method or differentiation with respect to a parameter. In consequence, the relations

of the boundary condition variations along the shell side and the conditions for the

solution matching are reported.

In the last Chapter 8, some rigorous mathematical treatments of a coupled ther-

momechanical problems are addressed. First, the sufficient conditions of existence,

uniqueness and continuity dependence on initial data of the Cauchy problem solu-

tions for differential-operational equation of hybrid type (a part of the equation is of

hyperbolic type, and another part is of parabolic type) are given. It is shown that if

the operational coefficients are suitably chosen, the investigated equation can model

a differential equations governing vibrations of a plate, i.e. the modified Germain-

Lagrange equation of thermal conductivity (a parabolic equation).

Second, a coupled thermo-mechanical of non-homogeneous shells with variable

thickness and variable Young modulus (a so-called Timoshenko type model) is stud-

ied. The investigated problem is reduced to uniformly correct problem in the first

form of a first order difference equation.

Third, boundary conditions for a non-homogeneous first order operator – differ-

ential equation possessing a unique solution are derived. Two important theorems

are formulated.

Lodz, Saratov J. Awrejcewicz

October 2003 V.A. Krysko

A.V. Krysko
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1 Three–Dimensional Problems of Theory of Plates in
Temperature Field

In section 1.1 historical outline putting emphasis on not solved problems in three-

dimensional formulation of plates thermoelastic theory is given.

Section 1.2 presents a system of differential equations describing a broad class

of problems of the coupled dynamic theory of thermoelasticity in a complete, three-

dimensional formulation including material’s non-homogeneity. The investigated

system of equations has been supplemented with an equation at singular points of

the examined space (a cubicoid), such as ribs, corners and simple points where vari-

ous boundary conditions meet. A difference approximation of the initial differential

system has been formulated with the use of the variational-difference method (the

method of integral identity). The margin of the difference scheme error has been

estimated. A theorem concerning stability of an explicit difference scheme has been

proven and the condition of stability that guarantees weak convergence of the dif-

ference scheme’s solution towards the solution of a differential system has been

obtained.

Section 1.3 contains a comparison of solving systems of hyperbolic equations

(using an explicit difference scheme based on applying Runge-Kutta’s method with

automatic choice of an integration step and Runge-Kutta’s method with a constant

step). Additionally, the section presents a comparison of applied iterative methods

of solving systems of elliptic equations (Seidel’s method, the upper relaxation, the

explicit and implicit methods of variable directions, and the explicit method of vari-

able directions with the so-called Chebyshev’s acceleration). Several model prob-

lems have been used to draw the comparisons and the most economical methods

have been applied as far as accuracy of solutions and computation time are con-

cerned. Algorithms of the described methods have been formulated and a package

of programs for solving problems of statics, quasistatics and elasticity and ther-

moelasticity dynamics has been created. An optimum choice of a spatial mesh step

and an integration step within a time interval has been made and legitimacy of the

theoretically obtained (in the first section) stability condition has been numerically

confirmed. Feasibility of the obtained results has also been proven by means of

comparison with real processes.

Section 1.4 presents numerous results of solutions to a broad class of elasticity

and thermoelasticity problems within the range of static, quasistatic and dynamic

problems. There is also an analysis of the influence of the temperature and deforma-

tions’ coupling’s effect using some examples of thermal and mechanical impacts.
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Finally, section 1.5 contains formulation of the equations of coupled dynamic

three-dimensional problems with physical non-linearities. Moreover, the finite dif-

ference methods, Runge-Kutta’s method and the method of additional loads have

been combined to form a numerical algorithm of solutions. Convergence of an ap-

proximate solution to the real one (the one searched for) has been analysed. The

results of problems concerning thermal and mechanical impacts beyond the elas-

ticity fields have been presented and the effects of the influence of reciprocal tem-

perature and deformation fields’ coupling on the analysed processes have also been

investigated in this chapter.

1.1 Introduction

While designing and constructing electronic devices, industrial facilities, flying ob-

jects or technological instrumentation, the problems related to heat processes are

particularly important. They appear due to the use of new materials, more complex

loads affecting every single element of analysed objects, and also due to an increase

of permissible heat loads in devices of smaller and smaller dimensions. As it is

generally known, heat processes determine stability of functioning and durability

of analysed objects. On the other hand though, numerous empirical measurements

of heat processes are extremely complex and expensive. Therefore, exact computa-

tional analyses (numerical, as well as analytical) ought to be conducted in order to

obtain constructions of optimum characteristics.

In fact, non-stationary temperature reactions in surrounding environment require

more accurate calculations than classic modelling of thermomechanical phenomena.

In 1845, Duhamel [188] was the first to formulate the theory of elasticity regarding

thermal stresses. However it was not until 1956, that Biot [107] introduced a dissi-

pation function into a thermal conduction equation to account for the heat caused

by the material’s deformation. Thus, the problem of thermoelasticity and the vari-

ational principle of coupled theory of thermoplasticity were first formulated. Since

then there has been a great interest in that sort of problems.

Earlier works on the theory of thermoelasticity [188] presented a dominating

view that a change of temperature within a time interval is small, and therefore it

was possible to apply a simplified (quasistatic) method, that is to neglect inertial

terms in equations of motion, without the risk of major errors. The next step, in-

troduced by means of the theory of thermoelasticity to simplify the problem, was

neglecting dilatation terms in heat conduction equations. Sometimes, when both of

the above mentioned terms are neglected in differential equations [598], the solution

of a static problem is found. It turns out though, that due to the significance of the

problems such simplifications ought not to be made. Among such problems are: the

problem of investigating stress waves in deformable bodies; the problems related to

determining thermoelastic vibrations; the problems related to investigating stabil-

ity of conservative elastic systems [119, 164, 267, 316, 356, 466]. In their works,

Danilovskoya [160, 161, 162, 163, 164], Kartashova and Shefter [316] analysed the

influence of inertial terms on bodies’ behaviour considering the inertia forces. They
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also proved that neglecting a dilatation term does not ensure qualitatively satisfac-

tory results due to inefficient examination of the coupling coefficient’s influence on

the phenomenon.

All the factors mentioned above caused a growth of interest in complete (i.e. not

simplified) problems which fruited in numerous analytical works.

Works of Karlsoy and Eger [315], Lykov [451], Kovalenko [355] and Nowacki

[512] contain analyses and generalisation of two, so far independent disciplines, i.e.

the theory of elasticity and the theory of heat conduction, and also a definition of so

called coupled problem. A full formulation of the principles of variational theories

of thermoelasticity is to be found in works [107, 265]. Betti’s theorem on reciprocity

of virtual works is discussed in monograph [516], and a generalisation of Maizel’s

method may be found in work [453]. Formulation of flat and space problems of cou-

pled quasistatic theory of thermoelasticity is described in the works of Podstrigach,

Schvetz, and Nowacki [512, 516, 545, 546, 547, 548]. Nowacki’s monograph [513]

introduces equations of the coupled theory of thermoelasticity into wave equations

and a method of solving linear and non-linear variants of the problems listed above.

Many popular methods of solving the equations of Galerkin’s [215] or Papkovich’s

[528] classic theories of elasticity are generalized in Podstrigach’s or Nowacki’s

works and applied into the theory of coupled thermoelasticity. The method of solv-

ing problems of the coupled theory of thermoelasticity in case of a boundless space

was proposed by Zorski [727], who used Green’s function to solve a heat conduc-

tion equation and considered dilatation to be a heat source. Chadwick’s work [145]

takes up generalized problems of solving boundary problems of the coupled theory

of thermoelasticity with the use of integral methods, whereas Souler and Brul use

the small parameter method [632].

The problems related to accuracy of formulated boundary problems of the cou-

pled theory of thermoelasticity were described first in book [119], which investi-

gates an initial boundary problem for an isotropic body, later extended also onto an

anisotropic body in Ionescu work [277].

Numerous dynamical problems of mathematical physics apply various integral

transformations, including Laplace’s transformation [294], the solution of which

is related to the use of Fourier’s series. In their work, Kupradze and others [398]

propose their theory of multidimensional singular integral equations that makes it

possible to investigate the static and dynamic problems of stabilised continuous sys-

tems’ vibrations. Hybrid problems, investigated by Magnaradze [452], Kupradze

and Burchuadze [397] may be solved with generalized integrals that correspond to

differential equations with the use of harmonic and analytical functions.

Defermos’ work [175] contains many theorems concerning basic problems of

the theory of thermoelasticity, including their proofs. Work [101] investigates the

so-called second and third boundary and initial boundary problems of the coupled

theory of thermoelasticity with the use of the method of potential and Laplace’s

transformation. Work [397] analyses four basic three-dimensional boundary prob-

lems of the theory of thermoelasticity in case of harmonic vibrations of a ho-

mogeneous isotropic medium with the following conditions set in its boundaries:


