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Preface

In this book we describe the basic principles, problems, and methods of clas-
sical mechanics. Our main attention is devoted to the mathematical side of
the subject. Although the physical background of the models considered here
and the applied aspects of the phenomena studied in this book are explored
to a considerably lesser extent, we have tried to set forth first and foremost
the “working” apparatus of classical mechanics. This apparatus is contained
mainly in Chapters 1, 3, 5, 6, and 8.

Chapter 1 is devoted to the basic mathematical models of classical me-
chanics that are usually used for describing the motion of real mechanical
systems. Special attention is given to the study of motion with constraints
and to the problems of realization of constraints in dynamics.

In Chapter 3 we discuss symmetry groups of mechanical systems and the
corresponding conservation laws. We also expound various aspects of order-
reduction theory for systems with symmetries, which is often used in applica-
tions.

Chapter 4 is devoted to variational principles and methods of classical
mechanics. They allow one, in particular, to obtain non-trivial results on the
existence of periodic trajectories. Special attention is given to the case where
the region of possible motion has a non-empty boundary. Applications of the
variational methods to the theory of stability of motion are indicated.

Chapter 5 contains a brief survey of the various approaches to the problem
of integrability of the equations of motion and some of the most general and
efficient methods of their integration. Diverse examples of integrated prob-
lems are given, which form the “golden reserve” of classical dynamics. The
material of this chapter is used in Chapter 6, which is devoted to one of
the most fruitful parts of mechanics — perturbation theory. The main task of
perturbation theory is studying the problems of mechanics that are close to
problems admitting exact integration. Elements of this theory (in particular,
the well-known and widely used “averaging principle”) arose in celestial me-
chanics in connection with attempts to take into account mutual gravitational
perturbations of the planets of the Solar System. Adjoining Chapters 5 and 6
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is Chapter 7, where the theoretical possibility of integrating the equations of
motion (in a precisely defined sense) is studied. It turns out that integrable
systems are a rare exception and this circumstance increases the importance
of approximate integration methods expounded in Chapter 6. Chapter 2 is
devoted to classical problems of celestial mechanics. It contains a description
of the integrable two-body problem, the classification of final motions in the
three-body problem, an analysis of collisions and regularization questions in
the general problem of n gravitating points, and various limiting variants of
this problem. The problems of celestial mechanics are discussed in Chapter 6
from the viewpoint of perturbation theory. Elements of the theory of oscilla-
tions of mechanical systems are presented in Chapter 8.

The last Chapter 9 is devoted to the tensor invariants of the equations
of dynamics. These are tensor fields in the phase space that are invariant
under the phase flow. They play an essential role both in the theory of exact
integration of the equations of motion and in their qualitative analysis.

The book is significantly expanded by comparison with its previous edi-
tions (VINITI, 1985; Springer-Verlag, 1988, 1993, 1997). We have added
Ch.4 on variational principles and methods (§4.4.5 in it was written by
S.V. Bolotin), Ch. 9 on the tensor invariants of equations of dynamics, § 2.7 of
Ch. 2 on dynamics in spaces of constant curvature, §§6.1.10 and 6.4.7 of Ch. 6
on separatrix crossings, §6.3.5 of Ch.6 on diffusion without exponentially
small effects (written by D.V. Treshchev), §6.3.7 of Ch.6 on KAM theory
for lower-dimensional tori (written by M. B. Sevryuk), §6.4.3 of Ch. 6 on adi-
abatic phases, § 7.6.3 of Ch. 7 on topological obstructions to integrability in the
multidimensional case, §7.6.4 of Ch.7 on the ergodic properties of dynamical
systems with multivalued Hamiltonians, and § 8.5.3 of Ch. 8 on the effect of gy-
roscopic forces on stability. We have substantially expanded §6.1.7 of Ch. 6 on
the effect of an isolated resonance, §6.3.2 of Ch. 6 on invariant tori of the per-
turbed Hamiltonian system (with the participation of M. B. Sevryuk), §6.3.4
of Ch. 6 on diffusion of slow variables (with the participation of S.V. Bolotin
and D.V. Treshchev), §7.2.1 on splitting of asymptotic surfaces conditions
(with the participation of D. V. Treshchev). There are several other addenda.
In this work we were greatly helped by S.V. Bolotin, M.B. Sevryuk, and
D. V. Treshchev, to whom the authors are deeply grateful.

This English edition was prepared on the basis of the second Russian edi-
tion (Editorial URSS, 2002). The authors are deeply grateful to the translator
E.I. Khukhro for fruitful collaboration.

Our text, of course, does not claim to be complete. Nor is it a textbook on
theoretical mechanics: there are practically no detailed proofs in it. The main
purpose of our work is to acquaint the reader with classical mechanics on the
whole, both in its classical and most modern aspects. The reader can find
the necessary proofs and more detailed information in the books and original
research papers on this subject indicated at the end of this volume.

V.IL Arnold, V.V. Kozlov, A.I Neishtadt
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1

Basic Principles of Classical Mechanics

For describing the motion of a mechanical system various mathematical mod-
els are used based on different “principles” — laws of motion. In this chapter
we list the basic objects and principles of classical dynamics. The simplest and
most important model of the motion of real bodies is Newtonian mechanics,
which describes the motion of a free system of interacting points in three-
dimensional Euclidean space. In §1.6 we discuss the suitability of applying
Newtonian mechanics when dealing with complicated models of motion.

1.1 Newtonian Mechanics

1.1.1 Space, Time, Motion

The space where the motion takes place is three-dimensional and Euclidean
with a fixed orientation. We shall denote it by E3. We fix some point o0 € E3
called the “origin of reference”. Then the position of every point s in E? is
uniquely determined by its position vector 03 = r (whose initial point is 0 and
end point is s). The set of all position vectors forms the three-dimensional
vector space R3, which is equipped with the scalar product ().

Time is one-dimensional; it is denoted by ¢ throughout. The set R = {t}
is called the time axis.

A motion (or path) of the point s is a smooth map A — E3, where A is an
interval of the time axis. We say that the motion is defined on the interval A.
If the origin (point o) is fixed, then every motion is uniquely determined by a
smooth vector-function r: A — R3.

The image of the interval A under the map ¢ — r(t) is called the trajectory
or orbit of the point s.

The welocity v of the point s at an instant ¢ € A is by definition the
derivative dr/dt = 1(t) € R3. Clearly the velocity is independent of the choice
of the origin.



