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Preface

The aim of this monograph is to give an overview of various classes of infinite-
dimensional Lie groups and their applications, mostly in Hamiltonian me-
chanics, fluid dynamics, integrable systems, and complex geometry. We have
chosen to present the unifying ideas of the theory by concentrating on specific
types and examples of infinite-dimensional Lie groups. Of course, the selection
of the topics is largely influenced by the taste of the authors, but we hope
that this selection is wide enough to describe various phenomena arising in the
geometry of infinite-dimensional Lie groups and to convince the reader that
they are appealing objects to study from both purely mathematical and more
applied points of view. This book can be thought of as complementary to the
existing more algebraic treatments, in particular, those covering the struc-
ture and representation theory of infinite-dimensional Lie algebras, as well as
to more analytic ones developing calculus on infinite-dimensional manifolds.

This monograph originated from advanced graduate courses and mini-
courses on infinite-dimensional groups and gauge theory given by the first
author at the University of Toronto, at the CIRM in Marseille, and at the
Ecole Polytechnique in Paris in 2001–2004. It is based on various classical and
recent results that have shaped this newly emerged part of infinite-dimensional
geometry and group theory.

Our intention was to make the book concise, relatively self-contained, and
useful in a graduate course. For this reason, throughout the text, we have
included a large number of problems, ranging from simple exercises to open
questions. At the end of each section we provide bibliographical notes, trying
to make the literature guide more comprehensive, in an attempt to bring the
interested reader in contact with some of the most recent developments in
this exciting subject, the geometry of infinite-dimensional groups. We hope
that this book will be useful to both students and researchers in Lie theory,
geometry, and Hamiltonian systems.

It is our pleasure to thank all those who helped us with the preparation of
this manuscript. We are deeply indebted to our teachers, collaborators, and
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friends, who influenced our view of the subject: V. Arnold, Ya. Brenier,
H. Bursztyn, Ya. Eliashberg, P. Etingof, V. Fock, I. Frenkel, D. Fuchs,
A. Kirillov, F.Malikov, G. Misio�lek, R. Moraru, N. Nekrasov, V. Ovsienko,
C. Roger, A. Rosly, V. Rubtsov, A. Schwarz, G. Segal, M. Semenov-
Tian-Shansky, A. Shnirelman, P. Slodowy, S. Tabachnikov, A. Todorov,
A. Veselov, F.Wagemann, J. Weitsman, I. Zakharevich, and many others.
We are particularly grateful to Alexei Rosly, the joint projects with whom
inspired a large part, in particular the “application chapter,” of this book,
and who made numerous invaluable remarks on the manuscript. We thank
the participants of the graduate courses for their stimulating questions and
remarks. Our special thanks go to M.Peters and the Springer team for their
invariable help and to D.Kramer for careful editing of the text.

We also acknowledge the support of the Max-Planck Institute in Bonn, the
Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, the Clay Math-
ematics Institute, as well as the NSERC research grants. The work on this
book was partially conducted during the period the first author was employed
by the Clay Mathematics Institute as a Clay Book Fellow.

Finally, we thank our families (kids included!) for their tireless moral
support and encouragement throughout the over-stretched work on the
manuscript.
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Introduction

What is a group? Algebraists teach that this is supposedly a set with
two operations that satisfy a load of easily-forgettable axioms. . .

V.I. Arnold “On teaching mathematics” [20]

Today one cannot imagine mathematics and physics without Lie groups, which
lie at the foundation of so many structures and theories. Many of these groups
are of infinite dimension and they arise naturally in problems related to dif-
ferential and algebraic geometry, knot theory, fluid dynamics, cosmology, and
string theory. Such groups often appear as symmetries of various evolution
equations, and their applications range from quantum mechanics to meteo-
rology. Although infinite-dimensional Lie groups have been investigated for
quite some time, the scope of applicability of a general theory of such groups
is still rather limited. The main reason for this is that infinite-dimensional Lie
groups exhibit very peculiar features.

Let us look at the relation between a Lie group and its Lie algebra as an
example. As is well known, in finite dimensions each Lie group is, at least
locally near the identity, completely described by its Lie algebra. This is
achieved with the help of the exponential map, which is a local diffeomor-
phism from the Lie algebra to the Lie group itself. In infinite dimensions, this
correspondence is no longer so straightforward. There may exist Lie groups
that do not admit an exponential map. Furthermore, even if the exponential
map exists for a given group, it may not be a local diffeomorphism. Another
pathology in infinite dimensions is the failure of Lie’s third theorem, stating
that every finite-dimensional Lie algebra is the Lie algebra attached to some
finite-dimensional Lie group. In contrast, there exist infinite-dimensional Lie
algebras that do not correspond to any Lie group at all.

In order to avoid such pathologies, any version of a general theory of
infinite-dimensional Lie groups would have to restrict its attention to certain
classes of such groups and study them separately. For example, one might con-
sider the class of Banach Lie groups, i.e., Lie groups that are locally modeled
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on Banach spaces and behave very much like finite-dimensional Lie groups.
For Banach Lie groups the exponential map always exists and is a local diffeo-
morphism. However, restricting to Banach Lie groups would already exclude
the important case of diffeomorphism groups, and so on. This is why the
attempts to develop a unified theory of infinite-dimensional differential geom-
etry, and hence, of infinite-dimensional Lie groups, are still far from reaching
greater generality.

In the present book, we choose a different approach. Instead of trying to
develop a general theory of such groups, we concentrate on various exam-
ples of infinite-dimensional Lie groups, which lead to a realm of important
applications.

The examples we treat here mainly belong to three general types of infinite-
dimensional Lie groups: groups of diffeomorphisms, gauge transformation
groups, and groups of pseudodifferential operators. There are numerous in-
terrelations between various groups appearing in this book. For example, the
group of diffeomorphisms of a compact manifold acts naturally on the group
of currents over this manifold. When this manifold is a circle, this action gives
rise to a deep connection between the representation theory of the Virasoro al-
gebra and the Kac–Moody algebras. In the geometric setting of this book, this
relation manifests itself in the correspondence between the coadjoint orbits of
these groups.

Another strand connecting various groups considered below is the theme of
the “ladder” of current groups. We regard the passage from finite-dimensional
Lie groups (i.e., “current groups at a point”) to loop groups (i.e., current
groups on the circle), and then to double loop groups (current groups on the
two-dimensional torus) as a “ladder of groups.” On the side of dynamical
systems this is revealed in the passage from rational to trigonometric and
to elliptic Calogero–Moser systems. The passage from ordinary loop groups
to double loop groups also serves as the starting point of a “real–complex
correspondence” discussed in the chapter on applications of groups. There we
study moduli spaces of flat or integrable connections on real and complex
surfaces using the geometry of coadjoint orbits of these two types of groups.

Most of main objects studied in the book can be summarized in the table
below.

In Chapter II, in a sense, we are moving horizontally, along the first row of
this table. We study affine and elliptic groups, their orbits and geometry, as
well as the related Calogero–Moser systems. We also describe in this chapter
many Lie groups and Lie algebras outside the scope of this table: groups of
diffeomorphisms, the Virasoro group, groups of pseudodifferential operators.
In the appendices one can find the Krichever–Novikov algebras, gl∞, and other
related objects.

In Chapter III we move vertically in this table and mostly focus on the
current groups and on their parallel description in topological and holomorphic
contexts. While affine and elliptic Lie groups correspond to the base dimension
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Base Real / topological Complex / holomorphic
dimension theory theory

affine (or, loop) groups elliptic (or, double loop) groups
1 (orbits ∼ monodromies (orbits ∼ holomorphic bundles

over a circle) over an elliptic curve)

flat connections holomorphic bundles
2 over a Riemann surface over a complex surface

(Poisson structures) (holomorphic Poisson structures)

connections over a threefold partial connections over a
3 (Chern–Simons functional, complex threefold (holomorphic

singular homology, Chern–Simons functional, polar
classical linking) homology, holomorphic linking)

1, either real or complex, in dimension 2 we describe the spaces of connections
on real or complex surfaces, as well as the symplectic and Poisson structures
on the corresponding moduli spaces. (In the table the main focus of study is
mentioned in the parentheses of the corresponding block.) In dimension 3 the
study of the Chern–Simons functional and its holomorphic version leads one
to the notions of classical and holomorphic linking, and to the corresponding
homology theories. (Although we confined ourselves to three dimensions, one
can continue this table to dimension 4 and higher, which brings in the Yang–
Mills and many other interesting functionals; see, e.g., [85].)

Note that the objects (groups, connections, etc.) in each row of this table
usually dictate the structure of objects in the row above it, although the
“interaction of the rows” is different in the real and complex cases. Namely,
in the real setting, the lower-dimensional manifolds appear as the boundary
of real manifolds of one dimension higher. For the complex case, the low-
dimensional complex varieties arise as divisors in higher-dimensional ones; see
details in Chapter III.

Overview of the content. Here are several details on the contents of
various chapters and sections.

In Chapter I, we recall some notions and facts from Lie theory and sym-
plectic geometry used throughout the book. Starting with the definition of a
Lie group, we review the main related concepts of its Lie algebra, the adjoint
and coadjoint representations, and introduce central extensions of Lie groups
and algebras. We then recall some notions from symplectic geometry, includ-
ing Arnold’s formulation of the Euler equations on a Lie group, which are the
equations for the geodesic flow with respect to a one-sided invariant metric on
the group. This setting allows one to describe on the same footing many
finite- and infinite-dimensional dynamical systems, including the classical
Euler equations for both a rigid body and an ideal fluid, the Korteweg–de Vries
equation, and the equations of magnetohydrodynamics. Finally, the prelimi-
naries cover the Marsden–Weinstein Hamiltonian reduction, a method often
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used to describe complicated Hamiltonian systems starting with a simple one
on a nonreduced space, by “dividing out” extra symmetries of the system.

Chapter II is the main part of this book, and can be viewed as a walk
through the zoo of the various types of infinite-dimensional Lie groups. We
tried to describe these groups by presenting their definitions, possible explicit
constructions, information on (or, in some cases, even the complete classifi-
cation of) their coadjoint orbits. We also discuss relations of these groups to
various Hamiltonian systems, elaborating, whenever possible, on important
constructions related to integrability of such systems. The table of contents is
rather self-explanatory.

We start this chapter by introducing the loop group of a compact
Lie group, one of the most studied types of infinite-dimensional groups. In
Section 1, we construct its universal central extension, the corresponding Lie
algebra (called the affine Kac–Moody Lie algebra), and classify the corre-
sponding coadjoint orbits. We also return to discuss the relation of this Lie
algebra to the Landau–Lifschitz equation and the Calogero–Moser integrable
system in the later sections.

In Section 2 we turn to the group of diffeomorphisms of the circle and its
Lie algebra of smooth vector fields. Both the group and the Lie algebra admit
universal central extensions, called the Virasoro–Bott group and the Virasoro
algebra respectively. It turns out that the coadjoint orbits of the Virasoro–
Bott group can be classified in a manner similar to that for the orbits of the
loop groups. The Euler equation for a natural right-invariant metric on the
Virasoro–Bott group is the famous Korteweg–de Vries (KdV) equation, which
describes waves in shallow water. Furthermore, the Euler nature of the KdV
helps one to show that this equation is completely integrable.

Section 3 is devoted to various diffeomorphism groups and, in particular,
to the group of volume-preserving diffeomorphisms of a compact Riemannian
manifold M . The Euler equations on this group are the Euler equations for an
ideal incompressible fluid filling M . Enlarging the group of volume-preserving
diffeomorphisms by either smooth functions or vector fields on M gives the
Euler equations of gas dynamics or of magnetohydrodynamics, respectively.
We also mention some results on the Riemannian geometry of diffeomorphism
groups and discuss the relation of the latter to the the Marsden–Weinstein
symplectic structure on the space of immersed curves in R

3.
Section 4 deals with the group of pseudodifferential symbols (or operators)

on the circle. It turns out that this group can be endowed with the structure of
a Poisson Lie group, where the corresponding Poisson structures are given by
the Adler–Gelfand–Dickey brackets. The dynamical systems naturally corre-
sponding to this group are the Kadomtsev–Petviashvili hierarchy, the higher
n-KdV equations, and the nonlinear Schrödinger equation.

Section 5 returns to the loop groups “at the next level”: here we deal with
their generalizations, elliptic Lie groups and the corresponding Lie algebras.
These groups are extensions of the groups of double loops, i.e., the groups of
smooth maps from a two-dimensional torus to a finite-dimensional complex


