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Preface

Mathematical and Statistical Estimation Approaches in Epidemiology compiles the-
oretical and practical contributions of experts in the analysis of infectious disease
epidemics in a single volume. Recent collections have focused in the analyses and
simulation of deterministic and stochastic models whose aim is to identify and rank
epidemiological and social mechanisms responsible for disease transmission. The
contributions in this volume focus on the connections between models and disease
data with emphasis on the application of mathematical and statistical approaches
that quantify model and data uncertainty.

The book is aimed at public health experts, applied mathematicians and scien-
tists in the life and social sciences, particularly graduate or advanced undergraduate
students, who are interested not only in building and connecting models to data but
also in applying and developing methods that quantify uncertainty in the context
of infectious diseases. Chowell and Brauer open this volume with an overview
of the classical disease transmission models of Kermack-McKendrick including
extensions that account for increased levels of epidemiological heterogeneity. Their
theoretical tour is followed by the introduction of a simple methodology for the
estimation of, the basic reproduction number, R0. The use of this methodology
is illustrated, using regional data for 1918–1919 and 1968 influenza pandemics.
This chapter is followed by Greenwood and Gordillo’s introduction to an analogous
probabilistic framework. The emphasis is now on the computation of the distri-
bution of the final epidemic size and the quantification of stochastically sustained
oscillations. Next, the differences between observable and unobservable events in
infectious disease epidemiology and their relationship to rigorous contact tracing
and microbiological methodology are discussed in Chapter 3 by Nishiura et al. Fur-
thermore, concepts like “dependent happening” and their role in identifying sources
of infectious disease risk or in assessing vaccine efficacy are also discussed. In
Chapter 4, Tennenbaum’s engages us in a discussion of modeling perspectives and
approaches through his discussion of the meaning of “contact”. He challenges the
reader to come up with novel approaches that bring together “ignored” biological
and mechanistic aspects of the infection process.

Chapter 5 (Nishiura and Chowell) and Chapter 7 (Bettencourt) focus on real-time
assessments of the reproduction number. The exposition is spiced with references to
recent epidemic outbreaks. For example, Bettencourt uses his framework to estimate
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vi Preface

disease epidemiological parameters and to assess the effects of interventions in real
time using data from the 2005 outbreak of Marburg hemorrhagic fever in Angola.
In Chapter 8, Burr and colleagues review the theoretical and practical challenges
associated with biosurveillance including the detection of disease outbreaks using
traditional diagnosed case rates or syndromic surveillance data. In Chapter 6, Lloyd
notes that parameter estimates are subject to uncertainty that arise not only from
errors (noise) in the data but also from the structure of the model used in the fitting
process. In other words, he argues that uncertainty must be evaluated at multiple
levels to account for our ignorance or for the balance that each modeler must reach
between biological detail and model complexity and objectives. Parameter estima-
tion, Lloyd argues, must include structural sensitivity analyses. The use of historical
data in epidemiological research is highlighted in Chapter 9 by Acuña-Soto’s con-
tribution. As he notes epidemiologists are reluctant to consider systematically the
possibility of working with historical data albeit, as we have seen in the first Chapter,
it is possible to extract valuable information from such data on influenza outbreaks.
In fact, we acquired the kind of quantitative knowledge that let us quantify some of
the differences between seasonal and pandemic influenza. Acuña-Soto’s work1, for
example, on the epidemic of 1576 that killed 45% of the entire population of Mex-
ico, highlights but a myriad of new possibilities for which the quantitative methods
and approaches highlighted in this book can be put to good use.

Banks and colleagues in Chapter 11 provide a succinct overview of the statistical
and computational aspects associated with inverse or parameter estimation prob-
lems for deterministic dynamical systems. Their results illustrate the impact that the
marriage between statistical theory and applied mathematics is having in the study
of infectious diseases while Chapter 10 (Arriola and Hyman) provides a general and
thorough introduction to the field of sensitivity and uncertainty analyses, a central
piece of any scientific work that is based on modeling.

The challenges and opportunities generated by studies of disease outbreak or
disease dynamics in specific contexts are highlighted in the final chapters. Shim
and Castillo-Chavez (Chapter 12) evaluate the potential impact that ongoing age-
dependent vaccination strategies (in the United States and Mexico) are likely to
have in reducing the prevalence of severe rotavirus infections. Rios-Doria et al.
(Chapter 13) analyze the spatial and temporal dynamics of rubella in Peru,
1997–2006 via a wavelet time series analysis and other methods. The study is carried
out in the context of changing policies that include the introduction of a vaccine
and/or increases in vaccination rates. Cintron-Arias and colleagues (Chapter 15)
model drinking as a “communicable” disease and, in the process, they highlight a
new set of opportunities and possibilities for the applications of the mathematical
and statistical approaches used in this volume. The focus here is on the evaluation
of the role of relapse (ineffective treatment) on drinking dynamics but as a function
of social network heterogeneity.

1 R Acuna-Soto, LC Romero, and JH Maguire; Large epidemics of hemorrhagic fevers in Mexico
1545–1815; Am. J. Trop. Med. Hyg, 62(6), 2000, pp. 733–739.
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The Basic Reproduction Number of Infectious
Diseases: Computation and Estimation Using
Compartmental Epidemic Models

Gerardo Chowell and Fred Brauer

Abstract The basic reproduction number (R0) is a central quantity in epidemi-
ology as it measures the transmission potential of infectious diseases. In this
chapter we review the basic theory of the spread of infectious diseases using
simple compartmental models based on ordinary differential equations including
the simple Kermack-McKendrick epidemic model, SIR (susceptible-infectious-
removed) models with demographics, the SIS (susceptible-infectious-susceptible)
model, backward bifurcations, endemic equilibria, and the analytical derivation of
R0 using the next-generation approach. This theory is followed by simple methodol-
ogy for the estimation of R0 with its corresponding uncertainty from epidemic time
series data. The 1918–1919 influenza pandemic in Winnipeg, Canada, and the 1968
influenza pandemic in US cities are used for illustration.

Keywords Influenza · Pandemic · Epidemiology · Basic reproduction number ·
Model

1 Thresholds in Disease Transmission Models

One of the fundamental results in mathematical epidemiology is that mathematical
epidemic models, including those that include a high degree of heterogeneity exhibit
a “threshold” behavior. In epidemiological terms, this can be stated as follows:
There is a difference in epidemic behavior when the average number of secondary
infections caused by an average infective during his/her period of infectiousness,
called the basic reproduction number, is less than one and when this quantity
exceeds one.
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2 G. Chowell and F. Brauer

There are two different situations. If the course of the disease outbreak is rapid
enough that there are no significant demographic effects (births, natural deaths,
recruitment) on the population being studied, then the disease will die out if the
basic reproduction number is less than one, and if it exceeds one there will be an
epidemic.

If, on the other hand, there is a flow into the population of individuals who may
become infected, through births, recruitment, or recovery of infected individuals
with no immunity against reinfection, then there is a different alternative. If the
basic reproduction number is less than one, the disease dies out in the population.
Mathematically this is expressed by the fact that there is a disease-free equilibrium
approached by solutions of the model describing the situation. If the basic repro-
duction number exceeds one, the disease-free equilibrium is unstable and solutions
flow away from it. There is also an endemic equilibrium, with a positive number of
infective individuals, indicating that the disease remains in the population.

However, the situation may be more complicated. We shall see later that in certain
circumstances it is possible to have an endemic equilibrium with a reproduction
number less than one.

We begin by describing the threshold phenomenon and the basic reproduction
number in epidemic models.

2 The Simple Kermack-McKendrick Epidemic Model

An epidemic, which acts on a short temporal scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before it disappears. Epidemics usually leave many members untouched. Often these
attacks recur with intervals of several years between outbreaks, possibly diminishing
in severity as populations develop some immunity.

One of the questions that first attracted the attention of scientists interested in the
study of the spread of communicable diseases was why diseases would suddenly
develop in a community and then disappear just as suddenly without infecting the
entire community. One of the early triumphs of mathematical epidemiology [54]
was the formulation of a simple model that predicted behavior very similar to that
observed in countless epidemics. The Kermack-McKendrick model is a compart-
mental model based on relatively simple assumptions on the rates of flow between
different classes of members of the population.

We formulate our descriptions as compartmental models, with the population
under study being divided into compartments and with assumptions about the nature
and time rate of transfer from one compartment to another. Diseases that confer
immunity have a different compartmental structure from diseases without immunity.
We will use the terminology SI R to describe a disease which confers immunity
against re-infection, to indicate that the passage of individuals is from the suscep-
tible class S to the infective class I to the removed class R. On the other hand,
we will use the terminology SI S to describe a disease with no immunity against
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re-infection, to indicate that the passage of individuals is from the susceptible class
to the infective class and then back to the susceptible class. Other possibilities
include SE I R and SE I S models, with an exposed period between being infected
and becoming infective, and SI RS models, with temporary immunity on recovery
from infection.

In order to model such an epidemic we divide the population being studied into
three classes labeled S, I , and R. We let S(t) denote the number of individuals
who are susceptible to the disease, that is, who are not (yet) infected at time t . I (t)
denotes the number of infected individuals, assumed infectious and able to spread
the disease by contact with susceptibles. R(t) denotes the number of individuals
who have been infected and then removed from the possibility of being infected
again or of spreading infection. Removal is carried out either through isolation from
the rest of the population or through immunization against infection or through
recovery from the disease with full immunity against reinfection or through death
caused by the disease. These characterizations of removed members are different
from an epidemiological perspective but are often equivalent from a modeling point
of view which takes into account only the state of an individual with respect to the
disease.

In formulating models in terms of the derivatives of the sizes of each com-
partment we are assuming that the number of members in a compartment is a
differentiable function of time. This may be a reasonable approximation if there
are many members in a compartment, but it is certainly suspect otherwise.

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W.O. Kermack and A.G.
McKendrick in 1927, 1932, and 1933 [54–56]. The first of these papers described
epidemic models. What is often called the Kermack-McKendrick epidemic model
is actually a special case of the general model introduced in this paper. The general
model included dependence on age of infection, that is, the time since becoming
infected.

The special case of the model proposed by Kermack and McKendrick in 1927
which is the starting point for our study of epidemic models is

S′ = −βSI

I ′ = βSI − α I

R′ = α I .

It is based on the following assumptions:

(i) An average member of the population makes contact sufficient to transmit
infection with βN others per unit time, where N represents total population
size (mass action incidence).

(ii) Infectives leave the infective class at rate α I per unit time.
(iii) There is no entry into or departure from the population; in particular there are

no deaths from the disease. Thus population size is a constant N0.


